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What I should have learned in ECON 30330 
 
Bill Evans 
Spring 2009 
 
 
ECON 30330 is prerequisite for ECON 30331.  Below is a 19 page handout that outlines most of the important concepts from 
ECON 30330 that will be utilized in this course, ECON 30331.  If you are not familiar with these concepts, you will need to 
review quickly and get up to speed.    
 
 
Random variables are variables whose outcome is determined in part by chance.  There are two types of random variables 
 
 Discrete – a countable number of possible outcomes.  Examples include a coin flip, throw of a die, a grade (A,B,C…) 

in a class, or scores on an SAT test, etc. 
 

 Suppose for a discrete random variable X there are n potential outcomes, (x1, x2….xn).  Each outcome has a 
probability associated with it, pi with the set if probabilities being (p1, p2, p3…pn)  These probabilities must 
satisfy two properties 
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  The second condition simply states that the sum of all probabilities must equal 1.   
 

 Example:  Suppose that going into an undergraduate class, your chances of getting an A, B, C, D or F are 
0.20, 0.25, 0.40, 0.10, and 0.05, respectively.  Notice that the sum of the probabilities are 1.    

 
 
 Continuous – an infinite number of possible values, such as measurements like height, weight and temperature. 
 

 A variable x is said to be a continuous random variable if it can be described with a function f(x) called a 
probability density function or pdf, that satisfies the following conditions 
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 For continuous distributions, the area under the curve represents a probability, as in condition (c).  

For ANY continuous random variable, the integral over all possible values must be 1 (condition b). 
 

Example:  The exponential distribution describes the probability a product/person/object will 
fail before a particular time, so an object can fail any time between 0 and ∞.  If x is the time 
to failure, the pdf is defined as  

 
   f(x) = λe-λx   for x>0 and λ>0 
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 where λ is a non-zero parameter that describes the shape of the distribution.  It is easy to 
demonstrate that f(x) is a proper pdf, that is, it integrates to 1 
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 In figure 1a below, I graph the exponential distribution for λ=0.5.  Notice the PDF declines continuously as 
X increases. 
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 Figure 1a     Figure 1b 

 
 
 Cumulative distribution functions (CDF):  Let x be a random variable, either continuous or discrete.  The CDF of the 

random variable is the probability the random variable is below a particular value “a” 
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  For a continuous random variable, F(a) is  
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  And using the exponential distribution above, it is easy to show that the cdf is  
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 The shaded area in Figure 1b above is the CDF for the exponential distribution where λ=0.5.   This particular CDF is 

Prob(X≤5)=F(5).  Using the definition of the exponential CDF above F(5) when λ=0.5 is therefore 1-e-0.5(5) = 1-0.082 
=0.918. 

 
 
Expected value is a measure of central tendency.  It represents what we expect the “average” outcome of a random process 
to be if we had a large number of experiments that generated the random variable.  The expectation operator for a random 
variable X is represented by the statement E[X] and we usually represent the expected value by the Greek letter mu (ux).  The 
calculation of the expected value differs for discrete and continuous distributions. 
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 Discrete distributions: 
 

 Expected values are simply weighted averages – the sum of the possibilities times the probabilities 
 

 Suppose a random variable has n possible outcomes X = {x 1, x2, …..xn} and the probabilities associated with 
these are P={p1, p2, …pn}. 
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 Example1:  a die has six sides, all equally likely with probabilities 1/6.  The expected value of a throw of a 

die is  
 

E[X] = (1/6)(1) + (1/6)(2) + (1/6)(3) + (1/6)(4) + (1/6)5 + (1/6)6 = 3.5 
 

Example 2:   Suppose that going into an undergraduate class, your chances of getting an A, B, C, D or F are 
0.20, 0.25, 0.40, 0.10, and 0.05, respectively.  The expected quality points from the class are therefore 
 
 E[X] = 0.2(4) + 0.25(3) + 0.4(2) + 0.1(1) + 0.05(0) = 2.45 

 
 
 Continuous Distribution 
 

 Given a continuous random variable x with PDF f(x), the expected value is kind of a weighted average where 
the weights are the values of the PDF.  Since the variable is continuous, we integrate rather than sum 
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 Example 1:  Suppose that the daily high temperatures T in a city are uniformly distributed over the interval 
[40,90].  Therefore, the PDF is defined as  

 
   f(T) = 1/50  for 40≤T≤90  
 
   It is easy to demonstrate this is a proper PDF, i.e., it integrates to 1 
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Example 2:  The Pareto distribution is used to describe the distribution of income in the top portion of the 
income distribution.  Therefore, if x is income, the pdf is defined for incomes in excess of T.  It is usually 
used to describe the income in higher income groups.  If x is the random variable (income), the PDF for the 
Pareto distribution is 
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f(x) = kTkx-(k+1) for k>0 for the values of x in the range (T,∞) 
 

The parameter k describes the shape of the distribution and it is required to be positive.  It is easy to show 
f(x) integrates to 1 
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  The expected value is therefore 
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Example:  Consider a sample of people with incomes in excess of $50,000 (X>$50,000) and suppose K=5.  
In this case, E[X] for X>$50,000 equals kT/(k-1) = 5(50,000)/4=$62,500 

 
 
 Properties of expectations: 
 
  If x is a random variable and a and b are constants, then: 
 
   E[ax] = aE[x]   
   E[x + b] = E[x] + b 
   E[ax + b] = aE[x] + b 
 
 

 Example:  Temperatures in Fahrenheit (F) can be converted to Celsius (C) using the simple linear 
transformation C = -17.78 + 0.556F.  If the average daily high temperature in F is uf=72 degrees, the average 
daily high in C is therefore uc = -17.78 + 0.556uf = 22.2 

 
   

Estimation:  The expected value is estimated by the sample average.  Let xi be a random and independent draw to a 
distribution with expected value ux and suppose there are n such draws, {x1, x2, …..xn}.   
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 In a random sample of size n, the people selected for inclusion in the sample are drawn randomly.  Since x̄  is 

a function of the n people picked at random, then x¯  is itself a random variable.   
 
 Suppose you sample 100 adult males and record their weight.  For every sample of 100, you would get a 

different estimate for x̄ .   
 
 It can easily be shown that the sample average is an unbiased estimate of the expected value.  And unbiased 

estimate is one that returns, on average, the true value.  So if the random variable is draw from a population 
with a mean of ux then  

  
   E[ x ] = ux 
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This does not mean your estimate is the correct one – it simply means that on average, the procedure you 
used to produce the estimates will generate the correct estimate. 

 
 
Variance:  is a measure of dispersion.  It is a measure of how much volatility there is in a random variable from one 

observation to the next.  Variances are usually represented by the lower case sigma squared (σ
2).  The definition of a 

variance for a random variable x is  
 
 E[(x – E(x))2]  = E[(x – ux)

2] = σ2
x 

The variance is the expected squared deviation in values from the expected value (ux).  Given the properties of 
expectation defined above, it is straightforward to show that 

 
  σ

2
x = E[(x – ux)

2] = E[x2] –ux
2 

 Unfortunately, the units of measure for the variance is in units squared.  So if x measures dollars, the units σ2
x are 

dollars squared.  Therefore, we typically report the standard deviation of variance (σx), which is the square root of 
variance because the units of measure of σx are in the same units of ux.  

 To calculate the variance, note that σ
2
x = E[x2] –ux

2 so one needs to first calculate the expected value ux, and square it, 
then subtract from this value E[X2] which is simply 
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 Properties of variances: 
 

 It is easy to show that if x is a random variable and a and b are constants: 
 
 V[ax] = a2V[x] 
 V[x + b] = V[x] 
 V[ax + b] = a2V[x] 
 
 
 Example:  Temperatures in Fahrenheit (F) can be converted to Celsius (C) using the simple linear 

transformation C = -17.78 + 0.556F.  If the standard deviation of the daily high temperature in F is σf=18, 
what is the standard deviation in Celsius? σ

2
c = 0.5562σ2

f = 100.16, therefore σc = 10.01.   
 
 
 Estimation:  Given n observations for X, the sample variance is given by the equation  
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 The estimated sample variance is usually represented by s2. 
 
 
The Standard Normal Distribution:  The most used distribution is of course the standard normal distribution.  The standard 
normal is a symmetric, unimodal distribution that has a ‘bell curve’ shape.  The PDF is defined as  
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And by definition, the CDF is 
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 The standard normal E[z]=u=0 and Var(z) = σ

2=1.   The CDF is the area under the curve so graphically, the CDF 
Φ(a) is represented as the shaded area in Figure 2a below.   
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    Figure 2a  Figure 2b  Figure 2c 
 
 Most software packages including Excel have functions that evaluate the standard normal distribution.  However, in 

statistics classes, the evaluations are typically done with tables.  Below in Table 1 is a typical table that evaluates the 
standard normal CDF.  This table reports the area Prob(Z≤a) for “a” reported out to two digits.  To conserve space, I 
only report the positive values for “a” – most books also report results for negative values of “a” as well.  

 
To use the table, suppose Z is normally distributed with a mean 0 and variance 1 and you are asked to evaluate 
Φ(1.65) = Prob(Z≤1.65).  The left vertical axis provides the left most digits for “a” and the top horizontal axis 
provides the second digit after the decimal.  To calculate the answer for this question, read down to 1.6, read over to 
0.05 and  Φ(1.65) = 0.9505. 

 
Suppose you wanted to estimate the opposite of the CDF, namely, the Prob(Z>b).  This area is represented as the 
shaded portion of figure 2b above.  Recognizing that Prob(Z≤b) + Prob(Z>b) = 1, then Prob(Z>b) is simply 
calculated as 1- Prob(Z≤b).  Example:  Prob(Z>2.27) = 1 – Prob(Z≤2.27) = 1 – 0.9884 = 0.0116. 
 
Finally, you can calculate the probability a random variable falls between two values, such as  
Prob(d < Z ≤ c).  This probability is represented as the shaded area in Figure 2c and using the results from the 
previous two examples, this area is Φ(c) – Φ(d).  Prob(0.93 < Z ≤ 2.59) = Φ(2.59) – Φ(0.93) = 0.9952 -0.8238 = 
0.1714. 
 
 

The Normal Distribution: The normal distribution has a very similar shape to the standard normal but in this instance the 
mean (u) and the variance (σ2) need not be zero and/or one respectively.  The normal distribution is a two parameter 
distribution which means that the entire shape of the PDF can be described if we know two parameters:  the mean (u) and the 
variance (σ2).  If a random variable Y is normally distributed, we usually represent this with the statement Y~ N(u, σ2).   
 

We can transform any normally distributed random variable into a standard normal distribution to solve problems.  
Suppose that Y~ N(u, σ2) then the transformed random variable Z=[(Y-u)/ σ]~N(0,1).  REMEMBER:  DIVIDE BY 
σ, NOT σ2. 
 

Example 1:  Suppose Y~N(10,9).  What is Prob(Y≤16)?  Prob[Z≤(16-u)/σ] = Prob[Z≤(16-10)/3] = 
Φ(2)=0.9772. 
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Example 2:  A school district defines students as having ‘special educational needs’ if their IQ scores are 80 
points or lower or in excess of 130 points.  In this school district, the IQ ~N(100,152). What fraction of 
students will have special educational needs in this district?     

 
Prob(Special needs) = Prob(IQ≤80) + Prob(IQ>130)  

   Prob(IQ≤80) = Prob(Z=≤(80-100)/15) = Prob(Z≤-1.33) = 0.0918 
   Prob(IQ>130) = 1 – Prob(IQ≤130) = 1 – Prob(Z≤(130-100)/15) =  

1 – Prob(Z≤2) = 1- 0.9772 = 0.0228 
 
   Prob(IQ≤80) + Prob(IQ>130) = 0.0918 + 0.0228 = 0.1146 
 

 
Table 1:  Cumulative area under the Standard Normal Distribution 

z 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
0.0 0.5000 0.5040 0.5080 0.5120 0.5160 0.5199 0.5239 0.5279 0.5319 0.5359
0.1 0.5398 0.5438 0.5478 0.5517 0.5557 0.5596 0.5636 0.5675 0.5714 0.5753
0.2 0.5793 0.5832 0.5871 0.5910 0.5948 0.5987 0.6026 0.6064 0.6103 0.6141
0.3 0.6179 0.6217 0.6255 0.6293 0.6331 0.6368 0.6406 0.6443 0.6480 0.6517
0.4 0.6554 0.6591 0.6628 0.6664 0.6700 0.6736 0.6772 0.6808 0.6844 0.6879
0.5 0.6915 0.6950 0.6985 0.7019 0.7054 0.7088 0.7123 0.7157 0.7190 0.7224
0.6 0.7257 0.7291 0.7324 0.7357 0.7389 0.7422 0.7454 0.7486 0.7517 0.7549
0.7 0.7580 0.7611 0.7642 0.7673 0.7704 0.7734 0.7764 0.7794 0.7823 0.7852
0.8 0.7881 0.7910 0.7939 0.7967 0.7995 0.8023 0.8051 0.8078 0.8106 0.8133
0.9 0.8159 0.8186 0.8212 0.8238 0.8264 0.8289 0.8315 0.8340 0.8365 0.8389
1.0 0.8413 0.8438 0.8461 0.8485 0.8508 0.8531 0.8554 0.8577 0.8599 0.8621
1.1 0.8643 0.8665 0.8686 0.8708 0.8729 0.8749 0.8770 0.8790 0.8810 0.8830
1.2 0.8849 0.8869 0.8888 0.8907 0.8925 0.8944 0.8962 0.8980 0.8997 0.9015
1.3 0.9032 0.9049 0.9066 0.9082 0.9099 0.9115 0.9131 0.9147 0.9162 0.9177
1.4 0.9192 0.9207 0.9222 0.9236 0.9251 0.9265 0.9279 0.9292 0.9306 0.9319
1.5 0.9332 0.9345 0.9357 0.9370 0.9382 0.9394 0.9406 0.9418 0.9429 0.9441
1.6 0.9452 0.9463 0.9474 0.9484 0.9495 0.9505 0.9515 0.9525 0.9535 0.9545
1.7 0.9554 0.9564 0.9573 0.9582 0.9591 0.9599 0.9608 0.9616 0.9625 0.9633
1.8 0.9641 0.9649 0.9656 0.9664 0.9671 0.9678 0.9686 0.9693 0.9699 0.9706
1.9 0.9713 0.9719 0.9726 0.9732 0.9738 0.9744 0.9750 0.9756 0.9761 0.9767
2.0 0.9772 0.9778 0.9783 0.9788 0.9793 0.9798 0.9803 0.9808 0.9812 0.9817
2.1 0.9821 0.9826 0.9830 0.9834 0.9838 0.9842 0.9846 0.9850 0.9854 0.9857
2.2 0.9861 0.9864 0.9868 0.9871 0.9875 0.9878 0.9881 0.9884 0.9887 0.9890
2.3 0.9893 0.9896 0.9898 0.9901 0.9904 0.9906 0.9909 0.9911 0.9913 0.9916
2.4 0.9918 0.9920 0.9922 0.9925 0.9927 0.9929 0.9931 0.9932 0.9934 0.9936
2.5 0.9938 0.9940 0.9941 0.9943 0.9945 0.9946 0.9948 0.9949 0.9951 0.9952
2.6 0.9953 0.9955 0.9956 0.9957 0.9959 0.9960 0.9961 0.9962 0.9963 0.9964
2.7 0.9965 0.9966 0.9967 0.9968 0.9969 0.9970 0.9971 0.9972 0.9973 0.9974
2.8 0.9974 0.9975 0.9976 0.9977 0.9977 0.9978 0.9979 0.9979 0.9980 0.9981
2.9 0.9981 0.9982 0.9982 0.9983 0.9984 0.9984 0.9985 0.9985 0.9986 0.9986
3.0 0.9987 0.9987 0.9987 0.9988 0.9988 0.9989 0.9989 0.9989 0.9990 0.9990  
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Conditional probabilities and independent events 
 
 Consider two random outcomes X and Y.  Sometimes we are interested in the conditional probability of an event, 

that is, what is the probability that a value for Y is observed conditional on observing some value of X?  Will it rain 
today given that is rained yesterday?  What is the chance I get an A in physics given that I earned a D in Calculus?   

 
 Mathematically, conditional probabilities are stated as 
 
  Pr(Y=b | X=a). 
 
 Or what is the probability of observing a value of b for Y given we already observe a value of a for X?  Example:  

when you apply to college, there are two potential outcomes, you can get in, Y=yes, or not, Y=no.  At Notre Dame 
last year, there were 14,000 applicants for undergraduate admission and roughly 25% were accepted.  The 
unconditional probability of admission is 25%, or Pr(Y=yes) = 0.25.  However, not all people have the same 
probability of admission because people have different characteristics.  You may want to ask what is the probability 
of admission if your total SAT scores T= M+V were less than 1000?  Pr(Y=yes | T<1000)? In this instance, Pr(Y=yes 
| T<1000) would be far less than 25%. In contrast, Pr(Y=yes | T>1550) is much greater than 0.25.  Therefore, in this 
instance, the realization of T conveys lots of information about Y. 

 
 Sometimes the realization of X conveys no information about the likelihood of admission.  In that case 
 
  Pr(Y=b | X ) = Pr(Y=b) 
 
 In this instance, the unconditional probability is the same as the conditional probability.  When these two 

probabilities are equal, the variables are considered “independent” and the realization of X conveys no information 
about the likely value of Y.   

 
 Example 1:  Among all births in the US, 51.4% are males and 48.6% are females.  Consider a mom who has 

one girl already.  What is the chance she will have a boy on the second birth? 
 
 The data demonstrates that among all second births, 51.4% are boys, or Pr(Y=Boy on 2nd birth)=.514.  Not 

surprisingly, the conditional probability does not differ.  In this case 
 
 Prob(Y=Boy on 2nd birth | girl on 1st birth) = 0.514 
 Prob(Y=Boy on 2nd birth | boy on 1st birth) = 0.514 
 
 Because the unconditional probability Prob(Y=Boy on 2nd birth) equals the conditional, Prob(Y=Boy on 2nd 

birth | girl on 1st birth), the sex of children on the 1st and 2nd births are independent – that is, the realization of 
sex on the 1st birth conveys no likely information about the sex on the second. 

 
 Example 2:  Among traffic accidents where an unbelted passenger is killed (an accident severe enough to kill 

someone in the car), the unconditional probability the driver dies is roughly 24%.  However, the probability 
varies considerably based on whether the driver was wearing a seat belt or not.   

 
  Prob(Y=driver dies in crash) = 0.24 
 
  Prob(Y=driver dies in crash | X=wearing a seat belt) = 0.17 
 
  Prob(Y=driver dies in crash | X= not wearing a seat belt) = 0.34 
 
 In this case, there is a lot of information contained in the fact that a driver is wearing a seat belt.  In fact, 

Prob(Y=driver dies in crash | X= not wearing a seat belt)/ Prob(Y=driver dies in crash | X=wearing a seat 
belt) = 2 – unbelted drivers are twice as likely to die than belted drivers.   
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 Conditional probabilities can be calculated used Baye’s Law which is simply Prob(Y | X) = Prob(Y ∩ 
X)/Prob(X). The statement Prob(Y ∩ X) is the joint probability that events Y and X occur.   

 
These calculations are easily illustrated by a simple 2 x 2 table.  Below is some information about adults 
aged 50-64 in the US.  There are 2 potential dichotomous outcomes:  X measures whether the person is a 
smoker at the time of the survey and this can take two values (smoker and non smoker) while Y measures 
whether the person died within five yes and again, there are 2 values (yes and no). 
 
 

  Currently smokes (X)  
 
 
 

  
Yes 

 
No 

Column 
totals 

Will die within 5 years 
(Y) 

Yes 0.023 0.027 0.050 
No 0.227 0.723 0.950 

 Row 
totals 

0.250 0.750 1.000 

 
 The row totals in the table reveal that 25% of the population currently smokes [Pr(X=smoke) = 0.25] while 

the column indicate that 5% will die within the next 5 years [Pr(Y=Die in 5 years=0.050].  The column 
elements are joint probabilities.  For example Pr(X=yes ∩ Y=yes) = 0.023, or 2.3% of the population 
currently smokes and will die in the next 5 years while Pr(Y=no ∩ X=no) = 0.723 or 72.3 percent of those 
surveyed are neither a smoker nor will they die in 5 years. 

 
 Note that by Baye’s Law, Pr(Y=yes | X=yes) = Pr(Y=yes ∩  X=yes)/Pr(X=yes) = 0.023/0.250 = 0.092, or 9.2 

percent of smokers will die within the next 5 years 
 
 Note also that Pr(Y=yes | X=no) = Pr(Y=yes ∩ X=no)/Pr(X=no) = 0.027/0.750 =0.036, or among non-

smokers, only 3.6% will die in the next five years. 
 
 Note further that Pr(Y=yes | X=yes)/Pr(Y=yes | X=no) = 0.092/0.036 = 2.55 or among adults aged 50-64, 

smokers have 2.55 times the five-year mortality rates that non-smokers have. 
 
 In this case Pr(Y=yes)=0.050 is different from Pr(Y=yes | X=yes) = 0.092 so smoking reveals a lot about 

future mortality and they are NOT independent events.  
 
 
Covariance and correlation: 
 

Covariance:  Measures the co-movement between two variables.  When one variable is above average, what is the 
expected magnitude of the other? 
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The picture above is a scatter plot of heights and weights of adult females.  The horizontal and vertical lines 
in the middle of the table represent the average height and weight respectively, so the average adult female is 
66 inches (5’6”) and weights 160 pounds.  Note that in quadrant II the dots represent people who have both 
above average height and weight while people in quadrant IV have below average height and weight.  In 
contrast, quadrant I represents people with above average height and below average weight.  Note that the 
bulk of the observations are in quadrants II and IV, so when height is below average, chances are, weight is 
below average.  In this case, X and Y (height and weight) are positively correlated. 
 

  Mathematically, covariance is defined as follows. 
 

Cov(X,Y) = σxy = E[(X – ux)(Y – uy)]  
 
   if σxy >0 then when X>ux, we also expect Y>uy  
   

if σxy <0 then when X>ux, we also expect Y<uy and vice versa  
 

 
Estimation:  Given n observations for both X and Y 
 

1

1
ˆ ( )( )
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n

xy i ii
X X Y Y

n
σ

=
= − −

− ∑  

 
  

 
The covariance is scale dependent – change the scale of X and/OR Y, you change the value of the 
covariance.  So for example, the covariance between weight in kilograms and height in centimeters 
will be different than the covariance between weight in pounds and height in inches.   Scale 
dependence is not a good thing.  The extended example below illustrates this result. 
 

 
For example, suppose height in weight (X and Y) are measured in inches and pounds, are 
transformed into centimeters and kilograms (W and Z).  These transformations are linear 
combinations so we can represent them as: 

 
 W = a + bX 
 Z = c + dY 

 
Where a, b, c, and d are constants and let the original covariance be Cov(X,Y)= σxy. 

    
   What is Cov(W,Z)?   
 
   Cov(W,Z)  = σwz = E[(W – uw)(Z – uz)]  
 
    Note from above that uw = a+bux and uz=c+duy 

  Cov(W,Z)  = σwz = E[(a+bX – a-bux)(c+dY – c-duy)] 
 
    = E[(bX – bux)(dY – duy)] 
 
    = E[b(X – ux)d(Y – uy)] 
 
    = E[bd(X – ux)(Y – uy)] 
 
    = bdE[(X – ux)(Y – uy)] = bd σxy 
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Therefore, when we changed how X and Y are measured, the value of the covariance changed as 
well. 

 
 
Correlation coefficient:  Because covariances are scale dependent, their value changes based on how X and Y are 
measured.  A scale independent measure of co-movement between two variables is the correlation coefficient 
 

yx

xyyx
σσ

σ
ρ =),(  

 
By construction, the correlation coefficient is bounded between -1 and 1 
 

-1≤ ρ(x,y) ≤ 1 
 
Suppose you have two variables X and Y.  How does the correlation coefficient between X and Y change if 
one changes the scale of the variables?  For example, suppose height in weight (X and Y) are measured in 
inches and pounds, are transformed into centimeters and kilograms (W and Z).  These transformations are 
linear combinations so we can represent them as: 
 
 W = a + bX 
 Z = c + dY 

 
 What happens to the correlation coefficient?  Recall from the statements above about the properties of 

variances and covariances when variables are changed by linear combinations.   
 
   Var(W) = b2Var(X) = b2

σ
2
x 

   Var(Z) = d2Var(Y) = d2
σ

2
y 

   Cov(W,Z) = bdCov(X,Y) = bdσxy 

  
    and therefore:   
 

 ),(),( yx
db

bd
zw

yx

xy

yx

xy

zw

wz ρ
σσ

σ
σσ

σ
σσ

σρ ====  

 
 

 Unlike the covariance, the correlation coefficient is therefore scale invariant.  The correlation coefficient between 
height and weight in inches and pounds is the same as the value when height and weight are measured in centimeters 
and kilograms. 
  
 

 Estimation of correlation coefficients.  With estimates of the covariance and variances, the estimate of the correlation 
coefficient is: 
 

  
ˆ

ˆ xy
xy

x ys s

σ
ρ =  

 
 

Linking back to independence:   two variables with zero covariance will also have a zero correlation coefficient.  A 
zero correlation coefficient means that the two variables are statistically independent, that is, the realization that x is 
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above average conveys no information about the likely magnitude of y (and vice versa).  A test that x and y are 
statistically independent is therefore a test that the estimated correlation coefficient is zero. 

 
 

Linear combination of random variables 
 
Many times, we can construct new random variables by combining two or more random variables.  For example, 
your math (M) and verbal (V) SAT scores are both random variables with particular properties.  Therefore, the 
combined score (T=M+V) is a random variable as well.  The question is, what are the properties of the new random 
variable T? 
 
What are the expected value and variance of a linear combination of random variables? 

 
Consider the general case where X and Y are random variables with means of ux and uy and standard deviations σx 
and σy.  Suppose that a third random variable Z is constructed using a linear combination of X and Y 

 
  Z = a +bX + cY 
 
  We can easily show, using the properties of expectations and variances above that 
 
   E[Z] = a + bux + cuy 

 

   V[Z] = b2
σ

2
x  + c2

σ
2
y + 2 bcσxy 

 
 
  Expected value of Z: 
 
   E[Z] = E[a + bX + cY] = a + bE[X] + cE[Y] = a + bux + cuy 
 
 
  Variance of Z: 
 
   V[Z] = E[(Z – uz)

2] = E[(a+bX+cY – a-cux-cuy)
2] = E[(b(X-ux)+c(Y-uy))

2] 
 
    =E[b2(X-ux)

2 + c2(Y-uy)
2 + 2bc(X-ux)(Y-uy)] 

 
    = b2E[(X-ux)]

2 + c2E[(Y-uy)]
2 + 2bcE[(X-ux)(Y-uy)] 

 
    = b2

σ
2
x  + c2

σ
2
y + 2 bcσxy 

   
 

 Note that given the definition of the correlation coefficient ρxy = σxy/(σxσy), we can also write the V(Z) as 

    V[Z] =  b2
σ

2
x  + c2

σ
2
y + 2 bcσxσy ρxy 

Example 1:  Suppose the expected values of SAT M and V are 550 and 570 respectively with standard 
deviations of σm =100 and σv = 96 and assume that ρmv=0.45.  What is the expected value and the variance of 
the total SAT score T=M+V?  In this case T=a+bM+cV so a=0, b=c=1, so 

 
   T = a+bM+cV = M+V 
 
   E[T] = ut =  a+bum +c uv = um +uv = 550 + 570 = 1020 
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   V[T] = σt
2 = b2

σm
2 + c2

σv
2 + 2 bcρmvσmσv = σm

2 + σv
2 + 2 ρmvσmσv 

 

= 1002 + 962 + 2(0.45)(100)(96) = 27,856 
 
    σt = 166.9 
 
 

Example 2:  Suppose that 60% of a person’s portfolio is in asset 1 and 40% are in asset 2.  Expected returns 
for these assets are u1= 6.1% and u2= 5.2%, the standard deviations of returns are σ1= 2.1% and σ2 = 2.6% 
respectively, and assume that the correlation coefficient in returns is ρ12=-0.25.  What is expected returns and 
the standard deviation in returns for the portfolio?  In the case, a=0, b=0.6 and c=0.4 so 
 

   rt = π1r1+ π2r2 = 0.6rr + 0.4r2 

   E[rt] = ut = E[π1r1+ π2r2] = π1u1+ π2u2 = 0.6(6.1) + 0.4(5.2) = 5.74 
 
   V[rt] = σt

2 = π1
2 σ1

2 + π2
2 σ2

2 + 2π1 π2 ρ12 σ1 σ2  
 
    = 0.62(2.12) + 0.42(2.62) + 2(0.6)(0.4)(-0.25)(2.1)(2.6) = 2.014 
 
   σt   = 1.42 
 

 Notice in this example that the standard deviation of the portfolio is much smaller than the standard deviation 
of either asset.  This is because the expected returns are negatively correlated – the investor has picked assets 
with negative correlation to reduce the risk in the portfolio.  

 
 
Variance of the sample mean 
 
 The mean or the sample average is the most frequent statistic constructed in applied work.  Above we showed that 

the sample mean x̄  is a random variable (its value is dependent on the n observations selected at random to be in the 
sample) but we also demonstrated that the mean is an unbiased estimate of the underlying expected value.   

 
 In this section, we show another property of the sample mean, namely, its variance.   
 
 Recall x̄  = (1/n)(x1 + x2 + x3 ….. + xn), it is a linear combination of random variables.    Remember also that each 

observation is independent of all the others and therefore Cov(xi, xj) = 0 for i≠j.  Using the definition of the variance 
of a linear combination above, if Z=a+bX+cY, and ρxy=0 then V(Z) = b2V(X) + c2V(Y) – the complicated covariance 
term drops out.  With this result we can generalize and construct the variance of the mean 

 
 Write x̄  as x1/n + x2/n + x3/n + ….xn/n and recall that the draws are independent, so σ12=0, σ23=0, etc.   
 

Therefore, V(x̄ ) = (1/n)2V(x1) + (1/n)2V(x2) + ….. (1/n)2V(xn) 
 

Each random draw to x is made from the same distribution, one with mean ux and a variance σx
2.  Therefore 

 
V(x̄ ) = σx

2/n2 + σx
2/n2 + σx

2/n2 .... + σx
2/n2 

  
There are n terms of σx

2/n2 and then V(x̄ ) collapses to nσx
2/n2 = σx

2/n.   
 
V(x̄ ) = σx

2/n 
 
As the sample size grows, the variance of the sample mean falls proportionally.   
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Central Limit Theorem 
 
 Suppose a sample of n observations is drawn from a population with mean ux and variance σx

2.  The Central Limit 
Theorem states that as the sample size gets large, the distribution of x̄  approaches that of a normal distribution with 
mean of ux and a variance of σx

2/n.   
 
 As n gets large, x̄  ~ N(ux, σx

2/n)  
 

 
Testing hypotheses about a sample mean  
 

Suppose you constructed a sample mean x̄ ,  and you wanted to use this information to test a hypothesis about the 
underlying population. 

 
For example, suppose that a cereal packaging machine is calibrated to distribute “a” ounces of cereal in each box.  
You want to test the machine to make sure it is working properly.  Therefore, you select a sample of n boxes at 
random, calculate the average weight x̄  and test whether the machine is, on average, dispensing “a” ounces of cereal.  
The null and alternative hypotheses are: 

 
  Ho:  ux = a 
  Ha:   ux ≠ a 
 
 To test the hypothesis, we need to know the underlying distribution of  x̄ .  Unfortunately, we cannot directly use the 

results of the Central Limit Theorem because we do not know σx
2 but instead, we must estimate it.  Therefore, we 

must use another distribution.   
 

One can show that if the null hypothesis is true (ux = a) then the ratio 
 

 t̂   = (x - a)/[s/n0.5] 
 
is distributed as a student-t distribution with n-1 degrees of freedom.  The student-t is a symmetric distribution with a 
mean of zero. It’s shape looks a lot like the normal distribution and as n approaches ∞, the student-t approaches a 

normal distribution.  The tests of hypotheses are based on ̂t .  To test hypotheses, we can use either confidence 
intervals or t-test. 
 

 Confidence intervals:  the confidence interval (CI) calculates the most likely values of the underling expected value 
given the a) sample size, b) estimate of x̄ , and c) the sample variance s2.  The confidence interval usually specifies the 
95% most likely values of the expected value.  The level of confidence that you want is usually measured as 1-α 
where α is the Type I error rate, that is, the chance you make the wrong decision.  So for a 95% confidence interval, 
α=0.05 and for a 99% confidence interval, α=0.01.   

 
 Below in Figure 3 is a graph of the student t-distribution – it approximates the normal when the degrees of freedom 

(DOF) are large.   Notice that the distribution is symmetric and unimodal.   
 

Because t̂ is symmetric, if the null hypothesis is true, then (1- α) % of the distribution for t̂ will be between two 
numbers -tα/2(DOF) and tα/2(DOF) where t α/2 (DOF) is the (1-α) percent critical value of the t-distribution with a 
certain degree of freedom.  (1- α) percent of the distribution lies between -tα/2  and tα/2 while α/2 percent  lies below –t 
and α/2 percent lies above t.  Given this fact and the definition of t̂ above, the (1- α)% confidence interval for a is 

 
 x̄  ± t α/2 (n-1)s/n0.5 

 
 If the value of “a” lies outside the confidence interval, you reject the null hypothesis.  If “a” lies inside the confidence 

interval, you cannot reject the null.  In most instances, we construct a 95% confidence interval so α=0.05 and 
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α/2=0.025.  To find the critical value of the t-distribution, we use a table like Table 2.  In this Table, the vertical axis 
provides the degrees of freedom and the horizontal axis provides α/2.  So for a t-test with 14 degrees of freedom and 
a 95% confidence level, we would look down to 14, over to 0.025 (α/2) and the critical value is therefore 2.145. 

  

0

0.45

-3 0 3
-tα/2 tα/2

 
     Figure 3:  Critical values of a student t-distribution 
 
 
 

Table 2 

Critical values of student t-distribution
  α/2

0.100 0.050 0.025 0.010 0.005
 1 3.078 6.314 12.706 31.821 63.657

2 1.886 2.920 4.303 6.965 9.925
3 1.638 2.353 3.182 4.541 5.841
4 1.533 2.132 2.776 3.747 4.604

Degrees 5 1.476 2.015 2.571 3.365 4.032
of 6 1.440 1.943 2.447 3.143 3.707

freedom 7 1.415 1.895 2.365 2.998 3.499
8 1.397 1.860 2.306 2.896 3.355
9 1.383 1.833 2.262 2.821 3.250

10 1.372 1.812 2.228 2.764 3.169
11 1.363 1.796 2.201 2.718 3.106
12 1.356 1.782 2.179 2.681 3.055
13 1.350 1.771 2.160 2.650 3.012
14 1.345 1.761 2.145 2.624 2.977
15 1.341 1.753 2.131 2.602 2.947
16 1.337 1.746 2.120 2.583 2.921
17 1.333 1.740 2.110 2.567 2.898
18 1.330 1.734 2.101 2.552 2.878
19 1.328 1.729 2.093 2.539 2.861
20 1.325 1.725 2.086 2.528 2.845
21 1.323 1.721 2.080 2.518 2.831
22 1.321 1.717 2.074 2.508 2.819
23 1.319 1.714 2.069 2.500 2.807
24 1.318 1.711 2.064 2.492 2.797
25 1.316 1.708 2.060 2.485 2.787
26 1.315 1.706 2.056 2.479 2.779
27 1.314 1.703 2.052 2.473 2.771
28 1.313 1.701 2.048 2.467 2.763
29 1.311 1.699 2.045 2.462 2.756
30 1.310 1.697 2.042 2.457 2.750
40 1.303 1.684 2.021 2.423 2.704
60 1.296 1.671 2.000 2.390 2.660
90 1.291 1.662 1.987 2.368 2.632

120 1.289 1.658 1.980 2.358 2.617
infinity 1.282 1.645 1.960 2.326 2.576
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 Example:  A cell phone manufacturer advertises that the battery in their phone will allow for 90 minutes of 
talk time before running out.  To test this claim, a famous consumer magazine ran a test on 20 fully charged 
cell phones and found that, on average (x̄ ), the phones ran out after only 84.05 minutes of talk time.  The 
standard deviation (s) of this estimate is 15.59 minutes.  Test the hypothesis that the mean equals 90 using a 
95% confidence interval. 

 
 Below are results from STATA for this experiment.  In the data set, there is a variable titled “battery_life” 

and to test the hypothesis that mean battery life equals 90 minutes, you need to invoke the statement 
 
 ttest battery_life=90 
 
 With this data, can you reject the manufacturer’s claim?  The null and alternative hypotheses are: 
 

   Ho:  ux = 90 
   Ha:   ux ≠ 90 

  
 

The results from STATA are reported below.  Looking on the table for the t-distribution, in this case, there 
are 20 observations and 19 degrees of freedom so the critical value of the t-value is t.025(n-1) = t0.025(19) = 
2.093.  Note that n=20,  x̄ =84.05 and s=15.59, and plugging these values into the definition of the confidence 
interval, we find that 

 
  x̄  ± t0.025(n-1)s/n = 84.05 ± 2.093(15.59/2005) = 84.05 ±  7.30 = (76.75, 91.34) 
  
 
 Although the mean talk is below 90 minutes, 90 is a “likely” outcome and within the 95% confidence 

interval so one cannot reject the null that mean talk time is 90 minutes. 
 
  

ttest battery_life=90 
 
One-sample t test 
------------------------------------------------------------------------------ 
Variable |     Obs        Mean    Std. Err.   Std. Dev.   [95% Conf. Interval] 
---------+-------------------------------------------------------------------- 
batter~e |      20     84.0461    3.485876    15.58931    76.75008    91.34212 
------------------------------------------------------------------------------ 
    mean = mean(battery_life)                                     t =  -1.7080 
Ho: mean = 90                                    degrees of freedom =       19 
 
    Ha: mean < 90               Ha: mean != 90                 Ha: mean > 90 
 Pr(T < t) = 0.0520         Pr(|T| > |t|) = 0.1039          Pr(T > t) = 0.9480 
 
 
 
t-tests:  As we noted above, if the null hypothesis is correct, the t-ratio is defined as 
 

t̂ = ( x - a)/[s/n0.5]   
 
is distributed as a student-t with n-1 degrees of freedom.  The student-t has a mean of zero and therefore, if 
the null is true, then t̂ should be ‘close’ to zero. If t̂  is a large positive or negative number, the null 
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hypothesis is most likely not true.  95% of the student-t distribution lies between –t0.025(n-1) and t0.025(n-1) 
these are the likely values if the null is true.  Therefore, we can use the value of t̂ in relation to these cutoffs 
to establish the null hypothesis. 
 

  if | t̂ | <  t0.025(n-1)  we cannot reject the null 
 

  if | t̂ | ≥  t0.025(n-1)  we can reject the null 
 

  Example:  Continuing with the cell phone example above, t0.025(n-1) = 2.093 and  
t̂ = (84.05 – 90)/[15.59/200.5] = -5.95/3.49 = -1.71.  Therefore, we cannot reject the null 
that ux = 90.  Again, although the mean talk time is below 90 minutes, because of sampling variance, we 
cannot reject the null that it is in fact 90 minutes 

 
  
 

 Testing for the equality in means across samples 

 In many cases, we are interested in testing the null hypothesis that the expected value is the same across two samples.  
For example, in an experiment, we are interested in testing whether the outcome is the same in the treatment and 
control samples.  In another example, you might want to examine whether alcohol use rates are the same at two 
different schools.  

 
 There are two populations, groups 1 and 2, and we want to test the null hypothesis that the expected values of a 

particular outcome are the same across the two groups.  Therefore, if u1 and u2 are the expected values in the two 
groups, the null and alternative hypotheses are: 

   Ho:  u1 = u2 
   Ha:  u1 ≠ u2 

 To perform this test we sample n1 and n2 observations from the two populations, construct the sample means (x̄1 and x̄
2) and the sample standard deviations (s1 and s2).  If the null hypothesis is correct than the difference in means should 
equal zero.  Therefore, we construct 

   1 2
ˆ x x∆ = −  

   
  And the null and alternative hypotheses are  

   Ho:  ∆̂ =0 

   Ha:  ∆̂ ≠ 0 

 
 Remember that x̄1 and x̄2 are random variables because they are a function of the observations selected at random to 

be in the samples.  Therefore, their difference should be a random variable as well.  If the null hypothesis is true, the 
expected value of ∆̂ divided by its standard errors should be distributed as a Student t-distribution with n1+n2-2 
degrees of freedom 

 

   1 20.5

1 2

ˆ
ˆ ~ ( 2)

1 1
p

t t n n

s
n n

∆= + −
 

+ 
 

 

 

 The denominator in the statistic above is the square root of the variance of ∆̂  or the standard error of ∆̂  
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 Where s21 and s22 are the estimated variances of X in the two samples, 1 and 2.   As with the tests of hypotheses for 

single means, there are two ways to test the null hypothesis above:  with confidence intervals and with t-tests.   
 
 
 Confidence intervals: 
 

  If the null is correct than the 95% confidence interval for the difference in means is  
 
 

 

0.5

0.025 1 2
1 2

1 1ˆ ( 2) pt n n s
n n

 
∆ ± + − + 

 
 

 
    

Example:  Students in an electrical engineering class ran a series of experiments to examine whether an expensive 
name-brand battery (like Eveready or Duracell) had a longer life than a low-cost generic battery.  The students 
purchased sets of AA batteries and placed them in a toy and measured the hours until the batteries wore out.  The 
results of the experiment from STATA are reported below.  The variable battery_type=1 if name brand and =0 of 
generic and the variable toy_life measured average hours until failure.   

 
To invoke the test of difference in means across samples in STATA, we invoke the command 

 

ttest toy_life, by(battery_type) 
  

which generates the following results 
 
ttest toy_life, by(battery_type) 
 
Two-sample t test with equal variances 
------------------------------------------------------------------------------ 
   Group |     Obs        Mean    Std. Err.   Std. Dev.   [95% Conf. Interval] 
---------+-------------------------------------------------------------------- 
       0 |      14    6.357092    .0771071    .2885083    6.190513    6.523672 
       1 |      16    6.713234    .1008812    .4035248    6.498211    6.928257 
---------+-------------------------------------------------------------------- 
combined |      30    6.547034    .0716923    .3926749    6.400407    6.693662 
---------+-------------------------------------------------------------------- 
    diff |           -.3561414    .1298406               -.6221077    -.090175 
------------------------------------------------------------------------------ 
    diff = mean(0) - mean(1)                                      t =  -2.7429 
Ho: diff = 0                                     degrees of freedom =       28 
 
    Ha: diff < 0                 Ha: diff != 0                 Ha: diff > 0 
 Pr(T < t) = 0.0052         Pr(|T| > |t|) = 0.0105          Pr(T > t) = 0.9948 
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Use these results to test the null hypothesis that there is no difference in battery life between the name brand generic 
batteries. 

 

The null hypothesis h0: ∆̂ = x̄g - x̄n = 0.  The value of ̂∆  = 6.357 – 6.713 = -0.356 
 

The pooled variance is calculated as 
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  Confidence intervals:  The critical value of the t-statistic with 95% confidence interval for this test is as follows 

0.5
0.025

1 1ˆ ( 2) [ ] 0.356 2.048(0.3548)(0.3660) ( 0.62, 0.09)n g p
n g

t n n s
n n

∆ ± + − + = − ± = − −  

 
In this instance, because 0 is not within the confidence interval, we can conclude that the expected life of a name 
brand and generic battery differ. 
 
 

 t-tests:  recall that when the null is true, the estimated difference in means divided the standard error is distributed as 
a t-distribution with n1+n2-2 degrees of freedom 

1 20.5

1 2

ˆ
ˆ ~ ( 2)

1 1
p

t t n n

s
n n

∆= + −
 

+ 
 

 

If the null is correct, the estimated value of t̂ should be close to zero – but how close?  As was the case for confidence 

intervals, the 95% most likely values for t̂  are between –tα/2 and tα/2 and therefore, if |̂t | > tα/2 then we can reject the 
null hypothesis.  From the printout, ∆̂  = -0.3561414, and we have calculated that sp=0.3458 and [(1/nn) + (1/ng)]

0.5 = 

0.3660, so ̂t  = -0.35613414/[0.3458*0.3660] =-2.74.  The critical value of the t-distribution t0.025(28)=2.048 and 
again, we can reject the null and conclude that the expected life of name brand and generic batteries differ. 
 


