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ECON 30330 is prerequisite for ECON 30331. Below isa 19 page handout that outlines most of the important concepts from
ECON 30330 that will be utilized in this course, ECON 30331. If you are not familiar with these concepts, you will need to
review quickly and get up to speed.

Random variables are variables whose outcome is determined in pachbnce. There are two types of random variables

Discrete — a countable number of possible outcomes. Exasriptlude a coin flip, throw of a die, a gradeBAS...)
in a class, or scores on an SAT test, etc.

Suppose for a discrete random variable X there g@tential outcomes, {xx.....x,). Each outcome has a
probability associated with it; with the set if probabilities being {0, ps...p,) These probabilities must
satisfy two properties

p, 20 for all i
zin:l p =1
The second condition simply states that the stiafl probabilities must equal 1.
Example: Suppose that going into an undergradiass, your chances of getting an A, B, C, D aré-
0.20, 0.25, 0.40, 0.10, and 0.05, respectivelytidddhat the sum of the probabilities are 1.
Continuous — an infinite number of possible values, such aasarements like height, weight and temperature.

A variable x is said to be a continuous randonade if it can be described with a function f(alled a
probability density function or pdf, that satisfies the following conditions

(@) f(x)=0 for all x
(b) Tf(mdx=1

(c) forall aand bwith—co<a<b<o
b
Prob(asx<h) = jfumx

a

For continuous distributions, the area under threerepresents a probability, as in condition (c).
For ANY continuous random variable, the integratioall possible values must be 1 (condition b).

Example: The exponential distribution describesghobability a product/person/object will
fail before a particular time, so an object cahday time between 0 anrd. If x is the time
to failure, thepdf is defined as

f(x) =ae™ for x>0 and>0



wherel is a hon-zero parameter that describes the sHape distribution. It is easy to
demonstrate that f(x) is a progaf, that is, it integrates to 1

[f(9dx=[Ae"dx=~e"[ =~ ~~e*=0-~1=1

(6] 0
In figure 1la below, | graph the exponential disition forA=0.5. Notice the PDF declines continuously as
Xincreases.
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Cumulative distribution functions (CDF): Let x be a random variable, either continuoudiscrete. The CDF of the
random variable is the probability the random Malgas below a particular value “a”

Prob(x< a) =F(a)

For a discrete random variable, F(a) is

F(@ =) p forxs<a
i=1
For a continuous random variable, F(a) is
Fi@) = [ f(xdx

And using the exponential distribution abovés ikasy to show that tloelf is

F(a) = J':)le‘“dx = J': —-dz=-€"f=-e" - (-€")=1-e™

The shaded area in Figure 1b above is the CD#héoexponential distribution wheke0.5. This particular CDF is
Prob(X<5)=F(5). Using the definition of the exponentiddEabove F(5) wheh=0.5 is therefore 1:€® = 1-0.082

=0.918.

Expected valueis a measure of central tendency. It represeng wh expect the “average” outcome of a randomga®c
to be if we had a large number of experimentsgkaerated the random variable. The expectatioratqpefor a random
variable X is represented by the statement E[X]wadisually represent the expected value by theldetter mu (). The
calculation of the expected value differs for didgerand continuous distributions.



Discrete distributions:
Expected values are simply weighted averages sutreof the possibilities times the probabilities

Suppose a random variable has n possible outc¥me 1, X, ..... X} and the probabilities associated with
these are P={pp, ...p}-

E[X] =X P + X Py oot X, Py = DX D) = b

i=1

Examplel: a die has six sides, all equally likeith probabilities 1/6. The expected value ofiet of a
dieis

E[X] = (1/6)(1) + (1/6)(2) + (1/6)(3) + (1/6)(4) (1/6)5 + (1/6)6 = 3.5

Example 2: Suppose that going into an undergtadtlass, your chances of getting an A, B, C, b are
0.20, 0.25, 0.40, 0.10, and 0.05, respectivelye &pected quality points from the class are tloegef

E[X] = 0.2(4) + 0.25(3) + 0.4(2) + 0.1(1) + 0.0502.45

Continuous Distribution

Given a continuous random variable x with PDF,f{lke expected value is kind of a weighted avevagere
the weights are the values of the PDF. Since #@niable is continuous, we integrate rather than sum

E[x] = jxf (x)dx = u,

Example 1: Suppose that the daily high tempeeatilirin a city are uniformly distributed over tinéerval
[40,90]. Therefore, the PDF is defined as

f(T) = 1/50 for 4@&T<90

It is easy to demonstrate this is a proper RI8E,it integrates to 1

90

1T 90-40_,

050 50/, 50

And the expected value is
90 2 [® _

E[X] =jdeT __T |80 -4d =65
1,50 2(50|, 100

Example 2: The Pareto distribution is used to dies¢he distribution of income in the top portiofithe
income distribution. Therefore, if x is incomee thdf is defined for incomes in excess of T. ligsially
used to describe the income in higher income grolfpsis the random variable (income), the PDFtfe
Pareto distribution is
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f(x) = kT ® " for k>0 for the values of x in the range <},
The parameter k describes the shape of the digtiband it is required to be positive. It is edsghow
f(x) integrates to 1
[KTExDdx = =T [ = =THeo™ — =TT = 0--1=1
1

The expected value is therefore

EDJ = [ xf ()dx = [ XkT*x*Pax = [KT*x*dx =
T T T
—KT*x™ ™ /(k =D |7 =—KT oo™ J(k =) = —KT *T *** /(k —1) = KT /(k - 1)

Example: Consider a sample of people with incomexcess of $50,000 (X>$50,000) and suppose K=5.
In this case, E[X] for X>$50,000 equals kT/(k-1560,000)/4=$62,500

Properties of expectations:
If X is a random variable and a and b are cotstdmen:

E[ax] = aE[X]
E[x+b]=E[Xx]+b
E[ax + b] = aE[x] + b

Example: Temperatures in Fahrenheit (F) can beerted to Celsius (C) using the simple linear
transformation C = -17.78 + 0.556F. If the averdgiy high temperature in F is272 degrees, the average
daily high in C is therefore.& -17.78 + 0.556u= 22.2

Estimation: The expected value is estimated by the sammeage. Let xbe a random and independent draw to a
distribution with expected valug and suppose there are n such drawg,¥x .....x.}.

n
X=@/n)>x
i=1
In a random sample of size n, the people seldotadclusion in the sample are drawn randomlync8ix is

a function of the n people picked at random, thaa itself a random variable.

Suppose you sample 100 adult males and recomwkeiht. For every sample of 100, you would get a
different estimate for x .

It can easily be shown that the sample average imbiased estimate of the expected value. Abdsed
estimate is one that returns, on average, thevtalue. So if the random variable is draw from aydation
with a mean of ythen

E[X] = u



This does not mean your estimate is the correctdhsimply means that on average, the procedowe y
used to produce the estimates will generate thecdoestimate.

Variance: is a measure of dispersion. It is a measure wfihach volatility there is in a random variablerfrone
observation to the next. Variances are usuallyessmted by the lower case sigma squas@d The definition of a
variance for a random variable x is

E[(x — ECOf] = E[(x — u)] = 0%

The variance is the expected squared deviatioalineg from the expected valug)(uGiven the properties of
expectation defined above, it is straightforwardhow that

%= El(x - u)?7 = E[X] -u’

Unfortunately, the units of measure for the vaz&is in units squared. So if x measures dolthesunitss®, are
dollars squared. Therefore, we typically repoetdiandard deviation of variance g¢), which is the square root of
variance because the units of measurg, @ire in the same units of.u

To calculate the variance, note th3t= E[x’] —u,°So one needs to first calculate the expected vgluand square it,

then subtract from this value Efvhich is simply

E[X°] = T x*f(Qdx=0a?

Properties of variances:
It is easy to show that if x is a random variadohel a and b are constants:
V[ax] = &V[x]

V[x + b] = V[X]
V[ax + b] = &V[x]

Example: Temperatures in Fahrenheit (F) can beerted to Celsius (C) using the simple linear
transformation C =-17.78 + 0.556F. If the stadd#viation of the daily high temperature in l6#s18,
what is the standard deviation in Celsig&2= 0.556c% = 100.16, therefore, = 10.01.

Estimation: Given n observations for X, the samgriance is given by the equation

The estimated sample variance is usually repredét $.

The Standard Normal Distribution: The most used distribution is of course the stathdarmal distribution. The standard
normal is a symmetric, unimodal distribution thasla ‘bell curve’ shape. The PDF is defined as



A2) = 1L o957 for —eo<z<co

(2m)*

And by definition, the CDF is

®(a) = T(p(z)dz: j 1 g0z

g (2 IT) 05

The standard normal E[z]=u=0 and Var(z*=1. The CDF is the area under the curve so grapiyj the CDF
®(a) is represented as the shaded area in Figurel@a.
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Most software packages including Excel have fumgithat evaluate the standard normal distributidawever, in
statistics classes, the evaluations are typicalhedvith tables. Below in Table 1 is a typicalléathat evaluates the
standard normal CDF. This table reports the areb(E<a) for “a” reported out to two digits. To consesgace, |
only report the positive values for “a” — most bea@itso report results for negative values of “aivad.

To use the table, suppose Z is normally distributgd a mean 0 and variance 1 and you are askedaioate
®(1.65) = Prob(Z1.65). The left vertical axis provides the leftshdigits for “a” and the top horizontal axis
provides the second digit after the decimal. Tloutate the answer for this question, read dowh.6p read over to
0.05 and®(1.65) = 0.9505.

Suppose you wanted to estimate the opposite aCfe, namely, the Prob(Z>b). This area is reprexkas the
shaded portion of figure 2b above. Recognizing Frab(Ab) + Prob(Z>b) = 1, then Prob(Z>b) is simply
calculated as 1- Probfh). Example: Prob(Z>2.27) =1 — Prob@27) = 1 —0.9884 = 0.0116.

Finally, you can calculate the probability a randeamable falls between two values, such as

Prob(d < Z< c). This probability is represented as the shaded in Figure 2c and using the results from the
previous two examples, this areabigc) —d(d). Prob(0.93 < £ 2.59) =9(2.59) —®(0.93) = 0.9952 -0.8238 =
0.1714.

The Normal Distribution: The normal distribution has a very similar shapthtostandard normal but in this instance the
mean (u) and the variana&) need not be zero and/or one respectively. Thealadistribution is a two parameter
distribution which means that the entire shapdefRDF can be described if we know two parametidismean (u) and the
variance ¢°). If a random variable Y is normally distributede usually represent this with the statement Y, ).

We can transform any normally distributed randomalde into a standard normal distribution to sqgiweblems.
Suppose that Y~ N(is?) then the transformed random variable Z=[(Y«}#N(0,1). REMEMBER: DIVIDE BY
5, NOT &%

Example 1: Suppose Y~N(10,9). What is Prok(¥6)? Prob[Z(16-u)b] = Prob[Z&(16-10)/3] =
®(2)=0.9772.



Example 2: A school district defines students as havingtal educational needs’ if their IQ scores are 80
points or lower or in excess of 130 points. Irsththool district, the I1Q ~N(100,35What fraction of
students will have special educational needs sdtstrict?

Prob(Special needs) = Probd80) + Prob(1Q>130)

Prob(IG<80) = Prob(Z=(80-100)/15) = Prob(Z-1.33) = 0.0918

Prob(IQ>130) = 1 — Prob(K130) = 1 — Prob(Z(130-100)/15) =
1 - Prob(&2) =1-0.9772 = 0.0228

Prob(IG80) + Prob(IQ>130) = 0.0918 + 0.0228 = 0.1146

Table 1: Cumulative area under the Standard Nobsdtibution

z 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09)]
0.0 0.5000 0.5040 0.5080/ 0.5120 0.5160 0.5199 0.5239 0.5279 0.5319 0.5359
0.1] 0.5398 0.5438 0.5478 0.5517 0.5557 0.5596 0.5636 0.5675 0.5714 0.5753
0.2 0.5793 0.5832 0.5871/ 0.5910 0.5948 0.5987 0.6026 0.6064 0.6103 0.6141
0.3] 0.6179 0.6217 0.6255/ 0.6293 0.6331 0.6368 0.6406 0.6443 0.6480 0.6517
0.4] 0.6554 0.6591 0.6628 0.6664 0.6700 0.6736 0.6772 0.6808 0.6844 0.6879
0.5] 0.6915 0.6950 0.6985 0.7019 0.7054' 0.7088 0.7123 0.7157 0.7190 0.7224
0.60 0.7257 0.7291 0.7324/ 0.7357 0.7389 0.7422 0.7454 0.7486 0.7517 0.7549
0.7 0.7580 0.7611 0.7642 0.7673 0.7704 0.7734 0.7764 0.7794 0.7823 0.7852
0.8] 0.7881 0.7910 0.7939/ 0.7967 0.7995 0.8023 0.8051 0.8078 0.8106 0.8133
0.9I 0.8159 0.8186 0.8212 0.8238 0.8264 0.8289 0.8315 0.8340 0.8365 0.8389
1.0] 0.8413 0.8438 0.8461 0.8485 0.8508 0.8531 0.8554 0.8577 0.8599/ 0.8621
1.1] 0.8643 0.8665 0.8686 0.8708 0.8729 0.8749 0.8770 0.8790 0.8810 0.8830
1.2] 0.8849 0.8869 0.8888 0.8907 0.8925 0.8944 0.8962 0.8980 0.8997| 0.9015
1.3] 0.9032 0.9049 0.9066 0.9082 0.9099 0.9115 0.9131 0.9147 0.9162| 0.9177
1.4] 0.9192 0.9207 0.9222 0.9236 0.9251 0.9265 0.9279 0.9292 0.9306/ 0.9319
1.5] 0.9332 0.9345 0.9357 0.9370 0.9382 0.9394 0.9406 0.9418 0.9429| 0.9441
1.6] 0.9452 0.9463 0.9474 0.9484 0.9495 0.9505 0.9515 0.9525 0.9535 0.9545
1.7] 0.9554 0.9564 0.9573 0.9582 0.9591 0.9599 0.9608 0.9616 0.9625/ 0.9633
1.8] 0.9641 0.9649 0.9656 0.9664 0.9671 0.9678 0.9686 0.9693 0.9699/ 0.9706
1.9I 0.9713 0.9719 0.9726 0.9732 0.9738 0.9744 0.9750 0.9756 0.9761 0.9767
20§ 09772 09778 0.9783 0.9788 0.9793 0.9798 0.9803 0.9808 0.9812 0.9817

2.1 0.9821 0.9826 0.9830 0.9834 0.9838 0.9842 0.9846 0.9850 0.9854 0.9857

2.2 0.9861 0.9864 0.9868 0.9871 0.9875 0.9878 0.9881 0.9884 0.9887 0.9890

23] 0.9893 0.9896 0.9898 0.9901 0.9904 0.9906 0.9909 0.9911 0.9913 0.9916

24 09918 0.9920 0.9922 0.9925 0.9927 0.9929 0.9931 0.9932 0.9934 0.9936

2.5] 0.9938 0.9940 0.9941 0.9943 0.9945 0.9946 0.9948 0.9949 0.9951 0.9952

2.6] 0.9953 0.9955 0.9956 0.9957 0.9959 0.9960 0.9961 0.9962 0.9963 0.9964

27] 0.9965 0.9966 0.9967 0.9968 0.9969 0.9970 0.9971 0.9972 0.9973 0.9974

28] 0.9974 0.9975 0.9976 0.9977 0.9977 0.9978 0.9979 0.9979 0.9980 0.9981

2.9I 0.9981 0.9982 0.9982 0.9983 0.9984 0.9984 0.9985 0.9985 0.9986 0.9986

3.0 0.9987 0.9987 0.9987 0.9988 0.9988 0.9989 0.9989 0.9989 0.9990 0.9990




Conditional probabilities and independent events

Consider two random outcomes X and Y. Sometimeareeénterested in the conditional probability ofevent,
that is, what is the probability that a value foisYobserved conditional on observing some valug?ofWill it rain
today given that is rained yesterday? What ictiance | get an A in physics given that | earnédia Calculus?

Mathematically, conditional probabilities are sthias
Pr(Y=b | X=a).

Or what is the probability of observing a valudodbr Y given we already observe a value of a¥@r Example:
when you apply to college, there are two potemtiatomes, you can get in, Y=yes, or not, Y=no.NAatre Dame
last year, there were 14,000 applicants for undeigmte admission and roughly 25% were accepted. Th
unconditional probability of admission is 25%, @(\=yes) = 0.25. However, not all people haveshme
probability of admission because people have diffecharacteristics. You may want to ask whatésprobability
of admission if your total SAT scores T= M+V wees$ than 1000? Pr(Y=yes | T<1000)? In this instalRY=yes
| T<1000) would be far less than 25%. In conti@gfy=yes | T>1550) is much greater than 0.25. dloee, in this
instance, the realization of T conveys lots of infation about Y.

Sometimes the realization of X conveys no inforaratibout the likelihood of admission. In thateas
Pr(Y=b | X) = Pr(Y=Db)

In this instance, the unconditional probabilityiie same as the conditional probability. Whesehgvo
probabilities are equal, the variables are consitlé&ndependent” and the realization of X convegsniormation
about the likely value of Y.

Example 1: Among all births in the US, 51.4% maes and 48.6% are females. Consider a mom who ha
one girl already. What is the chance she will hab®y on the second birth?

The data demonstrates that among all second bithé% are boys, or Pr(Y=Boy off ®irth)=.514. Not
surprisingly, the conditional probability does wiiffer. In this case

Prob(Y=Boy on ¥ birth | girl on ' birth) = 0.514
Prob(Y=Boy on ¥ birth | boy on 1 birth) = 0.514

Because the unconditional probability Prob(Y=Baoy2¥' birth) equals the conditional, Prob(Y=Boy ol 2

birth | girl on £ birth), the sex of children on thé& and 2° births are independent — that is, the realization
sex on the % birth conveys no likely information about the sexthe second.

Example 2: Among traffic accidents where an urggepassenger is killed (an accident severe entaukjh
someone in the car), the unconditional probabilig/driver dies is roughly 24%. However, the pholity
varies considerably based on whether the driverwessing a seat belt or not.

Prob(Y=driver dies in crash) = 0.24

Prob(Y=driver dies in crash | X=wearing a sedif) be0.17

Prob(Y=driver dies in crash | X= not wearing atdmelt) = 0.34
In this case, there is a lot of information conédl in the fact that a driver is wearing a sedt Helfact,

Prob(Y=driver dies in crash | X= not wearing a dest)/ Prob(Y=driver dies in crash | X=wearingeats
belt) = 2 — unbelted drivers are twice as likelyie than belted drivers.



Conditional probabilities can be calculated usagieBs Law which is simply Prob(Y | X) = Prob(Y
X)/Prob(X). The statement Prob(Y X) is the joint probability that events Y and Xcoe.

These calculations are easily illustrated by a Br@px 2 table. Below is some information aboutlesd

aged 50-64 in the US. There are 2 potential dashots outcomes: X measures whether the person is a
smoker at the time of the survey and this can takevalues (smoker and non smoker) while Y measures
whether the person died within five yes and aghiere are 2 values (yes and no).

Currently smokes (X
Column
Yes No totals
Will die within 5 years Yes 0.023 0.027 0.050
(Y) No 0.227 0.723 0.950
Row 0.250 0.750 1.000
totals

The row totals in the table reveal that 25% ofggbpulation currently smokes [Pr(X=smoke) = 0.25]lerh
the column indicate that 5% will die within the néxyears [Pr(Y=Die in 5 years=0.050]. The column
elements are joint probabilities. For example BysN Y=yes) = 0.023, or 2.3% of the population
currently smokes and will die in the next 5 yealslevPr(Y=noN X=no) = 0.723 or 72.3 percent of those
surveyed are neither a smoker nor will they di years.

Note that by Baye’s Law, Pr(Y=yes | X=yes) = Pr(¥sjy X=yes)/Pr(X=yes) = 0.023/0.250 = 0.092, or 9.2
percent of smokers will die within the next 5 years

Note also that Pr(Y=yes | X=no) = Pr(Y=y@sX=no)/Pr(X=no) = 0.027/0.750 =0.036, or among non-
smokers, only 3.6% will die in the next five years.

Note further that Pr(Y=yes | X=yes)/Pr(Y=yes | X¥& 0.092/0.036 = 2.55 or among adults aged 50-64,
smokers have 2.55 times the five-year mortalitggdhat non-smokers have.

In this case Pr(Y=yes)=0.050 is different from¥Y2ryes | X=yes) = 0.092 so smoking reveals a louabo
future mortality and they afdOT independent events.

Covariance and correlation:

Covariance: Measures the co-movement between two variabdsen one variable is above average, what is the
expected magnitude of the other?

Plot: Height vs. Weight

Height (in inches)

50 100 150 200 250 300 350 400
Weight (in pounds)



The picture above is a scatter plot of heightswaeigihts of adult females. The horizontal and eattiines
in the middle of the table represent the averagghhand weight respectively, so the average dduiale is
66 inches (5'6") and weights 160 pounds. Note ihaadrant Il the dots represent people who bt
above average height and weight while people iird IV have below average height and weight. In
contrast, quadrant | represents people with abeeeage height and below average weight. Notethizat
bulk of the observations are in quadrants Il andstvwhen height is below average, chances arghtvisi
below average. In this case, X and Y (height apjit) are positively correlated.
Mathematically, covariance is defined as follows.

CoV(X,Y) =6, = E[(X — u)(Y — u)]

if 6,y >0 then when X>y we also expect Y3u

if oy, <O then when X>y we also expect Y<sand vice versa

Estimation: Given n observations for both X and Y

o _i n g v
6y == 2, (X = R)Y ~Y)

The covariance is scale dependent — change theaficdland/OR Y, you change the value of the
covariance. So for example, the covariance betwesght in kilograms and height in centimeters
will be different than the covariance between weigtpounds and height in inches. Scale
dependence is not a good thing. The extended dgdrefow illustrates this result.

For example, suppose height in weight (X and Y)maeasured in inches and pounds, are
transformed into centimeters and kilograms (W apdThese transformations are linear
combinations so we can represent them as:

W =a+ bX
Z=c+dY

Where a, b, ¢, and d are constants and let thealigovariance be Cov(X,Y)sy,.
What is Cov(W,2)?
Cov(W,Z) =oy,= E[(W — uw)(Z — w)]
Note from above that,u= a+by and y=c+dy,

Cov(W,Z) =ow,= E[(a+bX — a-by(c+dY — c-dy)]

= E[(bX = by)(dY — dy)]

= E[b(X — (Y — u)]

= E[bd(X - W)(Y - u)]

= bdE[(X — (Y — u)] = bd oy
10



Therefore, when we changed how X and Y are meastiredialue of the covariance changed as
well.

Correlation coefficient: Because covariances are scale dependent, theér elaanges based on how X and Y are
measured. A scale independent measure of co-mavdragveen two variables is the correlation coiffit

Oy

0.0,

p(Xy) =

By construction, the correlation coefficient is bhded between -1 and 1
<p(xy)<1

Suppose you have two variables X and Y. How doe<orrelation coefficient between X and Y charige i
one changes the scale of the variables? For exasygppose height in weight (X and Y) are measured
inches and pounds, are transformed into centimatetkilograms (W and Z). These transformatioes ar
linear combinations so we can represent them as:

W =a+ bX
Z=c+dY

What happens to the correlation coefficient? Réwam the statements above about the properfies o
variances and covariances when variables are ctidngkénear combinations.

Var(W) = BVar(X) = b’
Var(Z) = dvar(Y) = d6%
Cov(W,Z) = bdCov(X,Y) = ba,

and therefore:

o, bdo o
oW, 2) = = 2= —2—=p(x,Y)
0,0, bodo, o0,

W= z

Unlike the covariance, the correlation coefficientherefore scale invariant. The correlationfiicient between
height and weight in inches and pounds is the ses1ike value when height and weight are measureehitimeters
and kilograms.

Estimation of correlation coefficients. With estimates of the covariance and variantesestimate of the correlation
coefficient is:

A

- UXY
pxy -
SSy

Linking back to independence: two variables with zero covariance will also haveero correlation coefficient. A
zero correlation coefficient means that the twaaldes are statistically independent, that is rdadization that x is
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above average conveys no information about théylikagnitude of y (and vice versa). A test thatxl y are
statistically independent is therefore a test thatestimated correlation coefficient is zero.

Linear combination of random variables
Many times, we can construct new random variabyesombining two or more random variables. For epdam
your math (M) and verbal (V) SAT scores are botidan variables with particular properties. Therefohe
combined score (T=M+V) is a random variable as wé&le question is, what are the properties ofithg random
variable T?

What are the expected value and variance of arlc@mabination of random variables?

Consider the general case where X and Y are randoiables with means of and y and standard deviatiows
andoy. Suppose that a third random variable Z is coestd using a linear combination of X and Y

Z=a+bX+cY
We can easily show, using the properties of egtens and variances above that
E[Z] =a+ byu+cy

V[Z] = b%c% + G’y + 2 bwyy

Expected value of Z:

E[Z] = E[a + bX + cY] = a + bE[X] + CE[Y] = a bu, + cy,

Variance of Z:
VIZ] = E[(Z - w7 = El(@+bX+cY — a-ccu)?] = E[(b(X-u)+e(Y-u)]
=E[F(X-U? + C(Y-y)? + 2DC(X-U)(Y-U)]
= BE[(X-U)]® + CE[(Y-U,)]? + 2bCE[(X-U)(Y-U,)]

= o’ + Co’y + 2 bwyy

Note that given the definition of the correlatmwefficientp,y = 6,/(ox0,), we can also write the V(Z) as
V[Z] = b’6?%, + c:2c52y + 2 bo,oy pyy
Example 1: Suppose the expected values of SAT dWaare 550 and 570 respectively with standard
deviations ob,,, =100 ands, = 96 and assume that,=0.45. What is the expected value and the variahce
the total SAT score T=M+V? In this case T=a+bM+s/a=0, b=c=1, so
T = atbM+cV = M+V

E[T] = u= a+by, +Cu, = U, +u,= 550 + 570 = 1020

12



V[T] = of = Bon2 + Co,2 + 2 bmomOy = 6 + 6% + 2 pmyOmOy
= 100 + 96 + 2(0.45)(100)(96) = 27,856
o= 166.9
Example 2: Suppose that 60% of a person’s pootfelin asset 1 and 40% are in asset 2. Expeetaths
for these assets arg=6.1% and - 5.2%, the standard deviations of returnscare2.1% and,= 2.6%
respectively, and assume that the correlation woeft in returns i$,,=-0.25. What is expected returns and
the standard deviation in returns for the portflitm the case, a=0, b=0.6 and ¢=0.4 so
I, = ml+ mwor,= 0.6F + 0.4p
E[r] = W = E[rnyr1+ o] = mu+ mou, = 0.6(6.1) + 0.4(5.2) =5.74
VIr] = o =m® 61 + my° 6,° + 211 Mz p12 61 62
= 0.6(2.7%) + 0.4(2.6°) + 2(0.6)(0.4)(-0.25)(2.1)(2.6) = 2.014
Gt =1.42
Notice in this example that the standard deviatibtne portfolio is much smaller than the standdediation

of either asset. This is because the expectetheetuie negatively correlated — the investor helsepi assets
with negative correlation to reduce the risk in plogtfolio.

Variance of the sample mean
The mean or the sample average is the most frégteistic constructed in applied work. Above st®wed that
the sample mean x is a random variable (its valdependent on the n observations selected abmaial be in the
sample) but we also demonstrated that the meanuslsiased estimate of the underlying expectedevalu
In this section, we show another property of taim@e mean, namely, its variance.
Recall X = (I/n)(x+ X + X3 -.... + %y, it is a linear combination of random variablefemember also that each
observation is independent of all the others ardefloreCov(x, x) = 0 for i#. Using the definition of the variance
of a linear combination above, if Z=a+bX+cY, gng=0 then V(Z) = BV(X) + cV/(Y) — the complicated covariance
term drops out. With this result we can generadizé construct the variance of the mean
Write X as ®n + %/n + %/n + ....x/n and recall that the draws are independent; s®, 5,5=0, etc.
Therefore, V(X) = (L/AY(X1) + (1INFV(X2) + ..... (1InJV(x,)
Each random draw to x is made from the same digidb, one with meanand a variance,>. Therefore
V(X) =6,2/n° + 6,2In* + 62N’ ... +o,In’

There are n terms of*/n? and then V(X ) collapses te,fIn? = ,2/n.

V(X) =6,2/n

As the sample size grows, the variance of the samglan falls proportionally.
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Central Limit Theorem

Suppose a sample of n observations is drawn frpppalation with mean,iand variance,® The Central Limit
Theorem states that as the sample size gets thmgdistribution of x approaches that of a nodlistibution with
mean of yand a variance af,?/n.

As n gets large, X ~ N(®,/n)

Testing hypotheses about a sample mean

Suppose you constructed a sample mean x, ansdardad to use this information to test a hypothabut the
underlying population.

For example, suppose that a cereal packaging machealibrated to distribute “a” ounces of ceigatach box.
You want to test the machine to make sure it iskimgrproperly. Therefore, you select a sample bbxes at
random, calculate the average weight x and testtwhthe machine is, on average, dispensing “atesiof cereal.
The null and alternative hypotheses are:

Ho: y=a
Ha w#a

To test the hypothesis, we need to know the uyideristribution of x. Unfortunately, we candaectly use the
results of the Central Limit Theorem because weatdknows,?but instead, we must estimate it. Therefore, we
must use another distribution.

One can show that if the null hypothesis is trye=(a) then the ratio
t =(x-a)[s/M]

is distributed as a student-t distribution with deigrees of freedom. The student-t is a symméisicibution with a
mean of zero. It's shape looks a lot like the ndrdistribution and as n approachesthe student-t approaches a

normal distribution. The tests of hypotheses as=d ori . To test hypotheses, we can use either confidence
intervals or t-test.

Confidenceintervals: the confidence interval (Cl) calculates the migsly values of the underling expected value
given the a) sample size, b) estimate of X, atiitec3ample variancé.sThe confidence interval usually specifies the
95% most likely values of the expected value. [Elvel of confidence that you want is usually meaduas e

wherea is the Type | error rate, that is, the chance iyailke the wrong decision. So for a 95% confidenterval,
0=0.05 and for a 99% confidence intervst0.01.

Below in Figure 3 is a graph of the student triisttion — it approximates the normal when the degrof freedom
(DOF) are large. Notice that the distributiosysnmetric and unimodal.

Because t is symmetric, if the null hypothesisug, then (1e) % of the distribution for t will be between two
numbers ,(DOF) and },(DOF) where {,, (DOF) is the (1e) percent critical value of the t-distribution wigh
certain degree of freedom. (@) percent of the distribution lies betweegp-tand §,, while a/2 percent lies below —t
ando/2percent lies above Given this fact and the definition of t aboveg (1-a)% confidence interval for a is

X =+t (n-1)s/A°

If the value of “a” lies outside the confidencéenval, you reject the null hypothesis. If “a’dienside the confidence
interval, you cannot reject the null. In most argtes, we construct a 95% confidence interval&05 and
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0/2=0.025. To find the critical value of the t-dibtition, we use a table like Table 2. In this [Ealthe vertical axis
provides the degrees of freedom and the horizaxialprovidesy/2. So for a t-test with 14 degrees of freedom and
a 95% confidence level, we would look down to Merao 0.025 ¢/2) and the critical value is therefore 2.145.

Degrees
of
freedom

'ta/2

t0(/2

)

Figure3: Critical valuesof a student t-distribution

Table 2

Critical values of student t-distribution

a/2
0.100 0.050' 0.025
1 3.078 6.314] 12.706
2 1.886 2.920 4.303
3 1.638 2.353 3.182
4 1.533 2.132 2.776
5 1.476 2.015 2.571
6 1.440 1.943 2.447
7 1.415 1.895 2.365
8 1.397 1.860 2.306
9 1.383 1.833 2.262
10 1.372 1.812 2.228
11 1.363 1.796 2.201
12 1.356 1.782 2.179
13 1.350 1.771 2.160
14 1.345 1.761 2.145
15 1.341 1.753 2.131
16 1.337 1.746 2.120
17 1.333 1.740 2.110
18 1.330 1.734 2.101
19 1.328 1.729 2.093
20 1.325 1.725 2.086
21 1.323 1.721 2.080
22 1.321 1.717 2.074
23 1.319 1.714 2.069
24 1.318 1.711 2.064
25 1.316 1.708 2.060
26 1.315 1.706 2.056
27 1.314 1.703 2.052
28 1.313 1.701 2.048
29 1.311 1.699 2.045
30 1.310 1.697 2.042
40 1.303 1.684 2.021
60 1.296 1.671 2.000
90 1.291 1.662 1.987
120 1.289 1.658 1.980
infinity 1.282 1.645 1.960
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0.010 0.005
31.821 63.657
6.965 9.925
4541 5841
3.747  4.604
3.365 4.032
3.143  3.707
2998  3.499
2.896  3.355
2.821  3.250
2764  3.169
2718  3.106
2.681 3.055
2.650 3.012
2.624 2977
2.602  2.947
2583 2921
2567 2.898
2552 2878
2539 2861
2528 2845
2518 2831
2508 2.819
2500 2.807
2492 2797
2485 2.787
2479 2779
2473 2771
2467 2763
2462 2756
2457  2.750
2423 2.704
2390  2.660
2368  2.632
2358 2617
2326 2576



Example: A cell phone manufacturer advertisestti@battery in their phone will allow for 90 mies of
talk time before running out. To test this clamfamous consumer magazine ran a test on 20 fodiyged
cell phones and found that, on average (x ), tbagshran out after only 84.05 minutes of talk tirfiée
standard deviation (s) of this estimate is 15.58utds. Test the hypothesis that the mean equalsi@g a
95% confidence interval.

Below are results from STATA for this experimeiht.the data set, there is a variable titled “brgittkfe”
and to test the hypothesis that mean battery djtels 90 minutes, you need to invoke the statement

ttest battery |ife=90
With this data, can you reject the manufactureldgsm? The null and alternative hypotheses are:

Ho: y =90
Hys u #90

The results from STATA are reported below. Lookimgthe table for the t-distribution, in this cafere
are 20 observations and 19 degrees of freedonmestritical value of the t-value isd(n-1) = t.0,{19) =
2.093. Note that n=20, x =84.05 and s=15.59pamgding these values into the definition of theftdence
interval, we find that

X +b024N-1)s/n = 84.05 + 2.093(15.59/8P= 84.05 + 7.30 = (76.75, 91.34)

Although the mean talk is below 90 minutes, 98 tkely” outcome and within the 95% confidence
interval so one cannot reject the null that me#atiane is 90 minutes.

ttest battery |ife=90

One-sanple t test
Vari abl e | Qbs Mean Std. Err. Std. Dev. [ 95% Conf. Interval]
_________ e mccemcmemm e meeeemeeeee e e e e em e e e e e e e e mmmmEm e ... ... .... ... --—-—--an
batter~e | 20 84. 0461 3. 485876 15. 58931 76. 75008 91. 34212
nmean = nean(battery life) t = -1.7080
Ho: mean = 90 degrees of freedom = 19
Ha: mean < 90 Ha: mean !'= 90 Ha: nmean > 90
Pr(T <t) = 0.0520 Pr(]T| >]t]) = 0.1039 Pr(T >t) = 0.9480

t-tests: As we noted above, if the null hypothesis is cdyrme t-ratio is defined as

t=(X-a)[s/f

is distributed as a student-t with n-1 degreeseddom. The student-t has a mean of zero andoheyd
the null is true, then t should be ‘close’ to zdfd is a large positive or negative numbeg thull
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hypothesis is most likely not true. 95% of thedstot-t distribution lies betweenggi{n-1) and §.4n-1)
these are the likely values if the null is truehefiefore, we can use the value of T in relatiothése cutoffs
to establish the null hypothesis.

if | f| < bo2dN-1) we cannot reject the null

if | {]> th0dN-1) we can reject the null

Example: Continuing with the cell phone examgdteve, §0.4n-1) = 2.093 and

t = (84.05 — 90)/[15.59/2(] = -5.95/3.49 = -1.71. Therefore, we cannot rejee null

that Yy = 90. Again, although the mean talk time is befiflminutes, because of sampling variance, we
cannot reject the null that it is in fact 90 mirsite

Testing for the equality in means acr oss samples

In many cases, we are interested in testing thehgpbthesis that the expected value is the samessitwo samples.
For example, in an experiment, we are interesteesting whether the outcome is the same in tlanrent and
control samples. In another example, you mighttw@examine whether alcohol use rates are the satme®
different schools.

There are two populations, groups 1 and 2, andiave to test the null hypothesis that the expecttdes of a
particular outcome are the same across the twggrotiherefore, if yand y are the expected values in the two
groups, the null and alternative hypotheses are:

Ho: li=W,
Ha W #W

To perform this test we sampleamdn, observations from the two populations, constriaetdample means;(&nd x
») and the sample standard deviationsa(sl ). If the null hypothesis is correct than the @iéfnce in means should
equal zero. Therefore, we construct

A=% -,

And the null and alternative hypotheses are

Remember thatpand % are random variables because they are a functitmeasbservations selected at random to
be in the samples. Therefore, their differencaighbe a random variable as well. If the null hyyesis is true, the
expected value dk divided by its standard errors should be distaduas a Student t-distribution withHm,-2
degrees of freedom

>

f=————~t(n,+n,-2)

The denominator in the statistic above is the sguzot of the variance dh or the standard error df
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Var (A) = s; {1 +—1}
n n
where sﬁ iscalled the pooled variance and

s, =[(n—1)s + (n,~Ds;1/[n,+n,=2]

Where § and $; are the estimated variances of X in the two sasydle@nd 2. As with the tests of hypotheses for
single means, there are two ways to test the gpibthesis above: with confidence intervals andhwitests.

Confidenceintervals:

If the null is correct than the 95% confidencemal for the difference in means is

0.5
Bt typn,+n,-2)s, E+H
2

Example: Students in an electrical engineering class rariasof experiments to examine whether an expensiv
name-brand battery (like Eveready or Duracell) ddohger life than a low-cost generic battery. $halents
purchased sets of AA batteries and placed thentoy and measured the hours until the batteriee wat. The
results of the experiment from STATA are reportetbtv. The variable battery type=1 if name brand =@ of
generic and the variable toy_life measured avehages until failure.

To invoke the test of difference in means acroagpdes in STATA, we invoke the command

ttest toy life, by(battery_type)
which generates the following results
ttest toy_life, by(battery_ type)

Two-sanple t test with equal variances

G oup | Qbs Mean Std. Err. Std. Dev. [95% Conf. Interval]
_________ e mccemcmemm e meeeemeeeee e e e e em e e e e e e e e mmmmEm e ... ... .... ... --—-—--an
0 | 14 6. 357092 . 0771071 . 2885083 6.190513 6. 523672
1] 16 6.713234 . 1008812 . 4035248 6.498211 6. 928257
_________ e mccemcmemm e meeeemeeeee e e e e em e e e e e e e e mmmmEm e ... ... .... ... --—-—--an
conbi ned | 30 6. 547034 . 0716923 . 3926749 6. 400407 6. 693662
_________ e mccemcmemm e meeeemeeeee e e e e em e e e e e e e e mmmmEm e ... ... .... ... --—-—--an
diff | -.3561414 . 1298406 -. 6221077 -. 090175
diff = nean(0) - nean(1) t = -2.7429
Ho: diff =0 degrees of freedom = 28
Ha: diff <O Ha: diff !'=0 Ha: diff >0
Pr(T <t) = 0.0052 Pr(|T| > |t]) = 0.0105 Pr(T >1t) = 0.9948
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Use these results to test the null hypothesisttiggie is no difference in battery life betweenrhene brand generic
batteries.

The null hypothesish A= X,- X,= 0. The value oA = 6.357 — 6.713 = -0.356

The pooled variance is calculated as

, _(n,=Ds’+(n, ~1)s}  @15)0.4035 + (13)0.2885

S, =0.12586
n,+n, -2 28

and therefore

s, =0.3548

Confidence intervals: The critical value of th&tdtistic with 95% confidence interval for thistés as follows

A £ty 0,6(N, + 1, = 2)s, [ni +n—1]°-5 = —0.356+ 2.048(0.3548)(0.3666) —( 0.62, 9)l

n 9

In this instance, because 0 is not within the awmfce interval, we can conclude that the expedtdfila name
brand and generic battery differ.

t-tests: recall that when the null is true, the estimatdfeoknce in means divided the standard error isidiged as
a t-distribution with n1+n2-2 degrees of freedom

A

A A
t=——~t(n,+n,-2)

If the null is correct, the estimated value ohdsld be close to zero — but how close? As wasdke for confidence

intervals, the 95% most likely values forare between w2 and {,» and therefore, iff|| > t,2then we can reject the
null hypothesis. From the printodt, = -0.3561414, and we have calculated tlxd.8458 and [(1/) + (1/r1,)]°'5 =

0.3660, sa = -0.35613414/[0.3458*0.3660] =-2.74. The criticalue of the t-distribution,,428)=2.048 and
again, we can reject the null and conclude thaekpected life of name brand and generic batteliféer.
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