Assignment 2.

1. Discuss the following statement:

"The Gauss-Markov theorem implies that the Maximum likelihood estimator will always have smaller variance than the Least squares estimator".

- 2. Discuss the main implications of not knowing the exact distribution of the disturbance (ε) for the Least squares and Maximum likelihood estimators.
 - 3. Show that **b** and s^2 are independent random variables.
 - 4. Suppose data are generated by the following model

$$y_i = \beta_1 + \beta_2 x_i + \varepsilon_i,$$

where x is an independent variable, i is an index for individuals and ε_i are independently (also from all x_i) normally distributed $N\left(0,\sigma^2\right)$. The density function of y_i , for a given x_i , is then given by

$$f(y_i \mid \boldsymbol{\beta}, \sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left[-\frac{1}{2} \frac{(y_i - \beta_1 - \beta_2 x_i)^2}{\sigma^2}\right].$$

a) Give an expression for the log-likelihood contribution of observation i, $\ell_i\left(\boldsymbol{\beta},\sigma^2\right)$. Explain why the loglikelihood function of the entire sample is given by

$$\ell\left(oldsymbol{eta},\!\sigma^2
ight) = \sum_{i=1}^N \ell_i\left(oldsymbol{eta},\!\sigma^2
ight).$$

- b) Obtain the first order conditions and show that they all have expectation zero for the true parameter values.
- c) Suppose that x_i is a dummy variable. $x_i = 1$ for males (the first N_1 observations) and $x_i = 0$ for females. Derive the first order conditions for Maximum likelihood and show that the ML estimators are given by

$$\widehat{\beta}_1 = \frac{1}{N - N_1} \sum_{i=N_1 + 1}^{N} y_i, \quad \widehat{\beta}_2 = \frac{1}{N_1} \sum_{i=1}^{N} y_i - \widehat{\beta}_1.$$

What is the interpretation of the true parameter values β_1 and β_2 in this case?

- d) Present two ways of estimating the asymptotic covariance matrix for $\hat{\beta}$ and compare the results.
- 5. Let y_i denote the number of times individual i buys to bacco in a given month. Suppose a random sample of N individuals is available, for which we

observe values 0,1,2,...... Let x_i be an observed characteristic of these individuals. If we assume that, for given x_i , y_i has a Poisson distribution with parameter $\lambda_i = \exp\left\{\beta_1 + \beta_2 x_i\right\}$, the probability mass function of y_i conditional upon x_i is given by

$$P\left\{y_i = y \mid x_i\right\} = \frac{e^{-\lambda_i} \lambda_i^y}{y!}$$

- a) write down the loglikelihood function for this so-called Poisson regression model.
- b) Derive the score vector. Using the Poisson distribution implies that $E(y_i \mid x_i) = \lambda_i$. Show that the score has expectation zero.
- d) Derive an expression for the information matrix. Use this to determine the asymptotic covariance matrix of the ML estimator and a consistent estimator for this matrix.
- 6. The following regression equation is estimated as a production function for Q:

$$\begin{array}{lcl} \ln Q & = & 1.37 + 0.632 \ln K + 0.452 \ln L \\ \\ R^2 & = & 0.98 & cov(b_K, b_L) = 0.055 & n = 25 \end{array}$$

where standard errors are given in parentheses, K is capital and L is labor.

- a) Test the hypothesis that capital and labor elasticities of output are identical.
 - b) Test that there are constant returns to scale.
- c) Assume that you could not reject the hypothesis in b). Show how you could use that this hypothesis applies in the population to increase the efficiency of your estimator.