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1. a. This is a simple F-test. 

i. The unrestricted model is as shown in the text of the exam.  The restricted model is 
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ii. The null and alternate hypotheses are
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iii. Define 
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 and 
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iv. 
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. Since all of the slope coefficients are zero under the null hypothesis, one can use the statistic
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v. At the 5% level with {3,26} degrees of freedom the critical value is F*=2.98

1.b.  Relative sizes of the coefficients.

i. The unrestricted model is as shown in the exam.  The restricted model is
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ii. The null and alternate are
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iii. This is also an F-test.  The restrictions can be written as
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Only two are necessary since the third is a linear combination of the first two.

iv. The F-statistic is 
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v. The degrees of freedom are {2,26}.  At the 5% level of test the critical value is 3.37.

2. A time series model with the error term 
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a. One period ago the error was 
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, and two periods ago the error was 
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b. Substituting recursively one can show that
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c. In evaluating 
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 only the contemporaneous terms in the expanded square matter, so we can cut to the end pretty quickly.
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d. In evaluating 
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 only the contemporaneous terms in the expansion matter, so again we can cut right to the end.


[image: image19.wmf]å

å

å

=

-

g

ld

s

+

g

g

l

s

+

g

g

d

s

=

e

e

0

j

j

2

2

u

j

2

2

2

u

j

2

2

2

u

1

t

t

2

E


e. OLS would not be BLUE since the error covariance matrix is not scalar diagonal.

3. A problem in heteroscedasticity

a. The expected value of y is 2pi, as can be seen from the following table:

yi
P(yi)


yi*P(yi)
(yi-E(yi))2
(yi-E(yi))2 P(yi)

0
1-pi
0
4 pi2
(1-pI) 4 pi2

2
pi
2 pi 
4-8pi+4pi2
pI(4-8pi+4pi2)

b. From the above table the variance of y is 4pi(1-pi).

c. The only two possible realizations of ui are
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d. Use the following table

uI
P(ui)


ui*P(ui)
(ui-E(ui))2
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Using the information in the table and the rules of expectation you can see that 

e. 
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f. Using the rules of expectation, substituting in for p in terms of the independent variable and a bit of algebra, the variance of the error term is
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Substituting away from the independent variable one gets the expected result that Var(ui)= 4pi(1-pi).

g. The assumption of homoscedasticity is violated in this model since the variance of the error term differs from observation to observation.

4. OLS Computations: The notation may seem a little peculiar because I cut and pasted from MathCAD.  The given information was:
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a.  Compute the least squares regression coefficients
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b. Compute the residual sum of squares:
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RSS=299.821
c. Compute the LS estimate of the error variance:
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d. Compute the coefficient covariance matrix:
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e. To test the hypothesis set up the restriction matrices:
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Then calculate the F-statistic
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F=3.322
The critical F for 2 and 47 degrees of freedom is about 3.19, so reject the null hypothesis.

You can also do this problem using the explained sum of squares in the numerator.  Using the given information you would have to calculate
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and find that, apart from rounding errors, the observed F is the same.
f.  To do this t-test set up the restriction matrices:

R=(0 1 1) and r=0

then construct the t-statistic
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t=1.866

The critical t for 47 degrees of freedom and 5% in each tail is 1.68, so reject the null hypothesis.
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