UNIVERSITY OF BRISTOL Department of Economics

Statistics and Introduction to Econometrics (ECON 12122)

Exercise 7.

Please hand in your solutions to one of the questions 2, 3 and 4 by Monday May 8

Please bring your solutions to questions marked by * to the relevant tutorial, answers to these questions will be circulated later.

1*. Many investigators believe that supply shocks were significant causes of inflation in the 1970's especially the OPEC oil price rises of 1974-75 and 1978-79. To test this proposition an intercept dummy (D) is created which takes the value 1 in 1974, 1975, 1978 and 1979,: 0 otherwise.

An estimated 'Phillips curve type' equation with 75 observations gives:-

$$\hat{P}_{t} = -10.63 + 0.76 P_{t-1} + 13.60 \frac{1}{U_{t}} + 1.60 N_{t} + 2.18 D_{t} \qquad R^{2} = 0.87$$
(5.39) (2.49) (1.01) (3.27)

where P is current level of inflation, U is the unemployment rate and N is the estimated natural level of unemployment. Figures in brackets are t values.

- (a) Is the estimated coefficient on the dummy variable of the correct sign? What is its interpretation?
- (b) If the equation had been estimated without the dummy variable would the value of R^2 have been smaller? Explain.
- (c) Interpret the results.
- (d) How would you have constructed the equation to allow for separate, differing supply side effects in the two periods 1974-75 and 1978-79 on the intercept?
- (e) How would you have constructed the equation to allow for separate, differing supply side effects in the two periods 1974-75 and 1978-79 on the slope coefficients?

2. The following OLS estimates use a sample of UK annual data 1950-1994. The dependent variable is the log of investment at 1990 prices, GDP is the log of GDP at 1990 prices and P is the log of the relative price of investment goods.

	(i)	(ii)	(iii)	(iv)
GDP _t	1.576	2.141	2.351	1.820
	(0.336)	(0.058)	(0.133)	(0.141)
GDP _{t-1}	0.833			
	(0.537)			
GDP _{t-2}	-0.249			
	(0.332)			
P _t	-0.394	-0.285	-0.462	-0.200
	(0.127)	(0.019)	(0.113)	(0.035)
P _{t-1}	0.109			
	(0.122)			
Constant	-16.701	-12.273	-19.458	-12.273
	(0.792)	(1.843)	(1.886)	(1.843)
R^2	0.992	0.991		0.943
S	0.041	0.0409	0.0385	0.034
RSS	0.0656	0.0703	0.0282	0.0231
n	45	45	22	23

standard errors are in brackets, s is the standard error of the residuals, RSS is the sum of squared residuals, n is the number of observations. Columns (i) (ii) were estimated over the whole sample, column (iii) were estimated on data from 1950-71, and column (iv) on data from 1972-94

- (a) Test the hypotheses that
 - (i) that the coefficient of GDP_t is one in equation (i).
 - (ii) that the coefficient of GDP_t is one in equation (ii).

Comment on your results.

- (b) Test the hypothesis that the three lagged explanatory variables have zero coefficients in equation (i).
- (c) Using the estimates given, test whether the parameters changed between 1950-1971 and 1972-1994. State any assumptions which your test requires. Is there any evidence that any of these assumptions are true? Give details.

- (d) Comment on all these results. Are there any other explanatory variables which you think should be included in these regressions? Explain.
- 3. The earnings regression given below were obtained for a sample collected in 1972 of 7,000 British male employees aged 15-64 who worked at least one week in the year preceding the interview. The variables are; Y = annual real earnings, S = years of full-time education, T = years of work experience [(age) (years of full-time education) 5], W=weeks worked during the year.

The dependent variable is logY. Standard errors are given in brackets.

	1	2	3
Constant	5.199	4.094	0.444
S	0.097	0.269	0.215
	(0.003)	(0.024)	(0.017)
S^2	-	-0.0064	-0.0049
		(0.0009)	(0.0006)
Т	0.091	0.092	0.068
	(0.002)	(0.002)	(0.001)
T^2	-0.0015	-0.0015	-0.0012
1	(0.00004)	(0.00004)	(0.00003)
LogW	-	_	1.115
6			(0.013)
R ²	0.316	0.321	0.665
S.E.	0.546	0.544	0.382

The average value of S is 10.3 years over the whole sample. Those With a First degree had an average value of S of 17.7.

- (a) Test the hypothesis that the coefficient of logW is unity. How do you interpret this result? On what assumptions is this test based?
- (b) Explain the role played by the quadratic terms in these equations and interpret their estimated coefficients.
- (c) Using standard results on omitted variables bias, account for the difference in the value of the coefficients of S in specifications (1) and (2).

4. Two equations relating annual percentage price changes in Canada ($p^{\&}$) to percentage price changes in the U.S. ($p^{\&}$) were estimated by OLS for 1952 to 1970.

$$\mathbf{p}_{\rm T}^{\rm C} = 0.48 + 0.59 \mathbf{p}_{\rm T}^{\rm T} + e_{1t}$$
(0.54) (0.19)

$$\mathbf{R}^2 = 0.365, \ \mathbf{RSS} = 35.13, \ \mathbf{s} = 1.438.$$

$$\mathbf{p}_{\rm T}^{\rm C} = 0.86 + 0.53 \mathbf{p}_{\rm T}^{\rm T} - 0.64 \mathbf{D} + e_{2t}$$
(0.67) (0.21) (0.74)

$$\mathbf{R}^2 = 0.393, \ \mathbf{RSS} = 33.58, \ \mathbf{s} = 1.449.$$

Standard errors in brackets, RSS is the sum of squared residuals, s is the standard errors of the residuals, e_{1t} and e_{2t} are least squares residuals, D_t is a dummy variable which takes the value 1 up to and including 1958 and 0 afterwards.

- (a) What is the relationship between RSS and s?
- (b) What is the interpretation of the constant term? Comment on the specification of the model.
- (c) Test the hypothesis that the coefficient on D_t is zero.
- (d) Interpret the role of D_t. How would you formulate the model if you thought the slope had changed?

5*. In the model

$$y_t = \alpha_1 x_t + \alpha_2 z_t + u_t$$

 α_1 is estimated by, $\hat{\alpha}_1 = \frac{\sum x_t y_t}{\sum x_t^2}$ i.e. z_t is omitted from the regression.

Derive an expression for the bias of $\mathfrak{G}_{\overline{T}}$. If z_t and x_t are positively correlated, is it possible to deduce anything about the sign of the bias? Explain.