Chapter 1

Density estimation
1.1 Introduction

1.1.1 Parametric density estimation
Choose a parametric distribution, e.g. the Normal, and estimate the defining parameters.

Advantage: It is easy to apply.

Disadvantage: Inflexible. Imposes a specific shape on the density.

1.1.2 Histogram density estimation
Estimate directly from the data without restrictive assumptions.  A histogram, in which you pick the bin width, is an example of this approach.

The histogram as an estimate of f(x) is piecewise constant and its accuracy sensitive to the choice of the bin width.

Each element in a particular bin gets equal weight, and those not in the bin get no weight, in the estimate of f(x).

1.2 Kernel density estimation

1.2.1 Weighting functions

The histogram uses a particular rectangular weighting scheme, noted above. 

Rectangular: Suppose as an alternative we construct a rectangle over each observed data point (xi-h to xi+h) and compute the relative frequency of points in the interval.  Each data point in the interval gets the same weight, but a given observation may belong to several intervals.  'h' is known as the bandwidth. 
Triangular: Construct a triangle over each data point.  Points within (xi-h to xi+h) get more weight if they are close to xi.
Gausian: As a weighting scheme use the N(0,h2) density. In principle every data point in the sample is included in computing the estimate of f(x) at xi.

1.2.2 Kernels
(1) The weighting functions listed above are all of the form
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Where K is the kernel, and determines the shape of the weighting function. 'h' is the bandwidth or smoothing constant.

(2) Any function of z can serve as a Kernel as long as the area under it is one, it has a 'mean' of zero, and has finite moment of inertia (i.e., its second moment about the origin is finite).

(3) The components K and h determine the properties of the estimator.

1.2.3 Densities with bounded support
(1) Although we may not know the pdf that generated the data we may know that the support for the dgf is restricted.  One would then expect that the estimator 
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 would have a similarly restricted support.
(2) The solution is to use a transformation that maps the original random variable to a new one that does not have a bounded support. Apply kernel density estimation to the new rv, then reverse the transformation.  The recipe is from Zucchini, Lecture 1, p 8.

1.3 Properties of kernel estimators
(1) Mean Square Error 
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  Note that the expectation is conditional on a particular x.  That is, the MSE is a function of the rv.

(2) Integrate Mean Square Error is found by integrating over the support of f(x).  It is a measure of the global accuracy of 
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. It is the sum of the integrated squared bias and the integrated variance.

1.3.1 Bias, variance and mean squared error
(a) Expected value of 
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: By a transformation of variable you can show that the mean of 
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is a weighted average of the true density at x, where the weights are determined by the bandwidth and the kernel. Note that the bias does not depend on the sample size.
Figure 1.9 is particularly informative.  Consider the lower left panel.  The heavy black line is the set of points representing 
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 .  The grey line is the set of points representing f(x), the truth. At x=10, say, the difference between the two lines represents the bias attributable to the particular bandwidth and kernel.  Figure 1.10 summarizes the differences between 
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 and f(x) over the entire support.
(b) Variance of 
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: Viscerally, the variance is the difference between the 'second moment' of the estimator minus the square of the first moment. The variance depends on the sample size.

	
	Increase Sample Size
	Increase

Bandwidth
	Kernel

	Bias and Integrate Square Bias
	None
	Increase
	

	Variance and Integrate Variance
	Decrease
	Decrease
	

	Mean Square Error and IMSE
	Decrease
	Convex
	Epanechnikov


(c) The above table leads us to conclude as n increases the optimal bandwidth

decreases.  Intuitively, increasing the sample size increases the amount of information available to estimate f; it enables us to estimate f in greater detail. Thus when n is very large we can distinguish the smaller dips and bumps of f with confidence, i.e. we can use a smaller bandwidth, a “greater magnification”. If n is small then we have to make do with “less magnification”, i.e. a larger bandwidth.
(d) In practice we don't know f(x), so the optimal bandwidth is unknown, but needs to be estimated.

1.3.2 Asymptotic properties
1. The asymptotic bias depends on

(a) h, where the bias approaches zero as h becomes small,

(b) k2, the variance of the kernel,

(c) f''(x), the curvature of f at the point x.

On average ˆ f “erodes the hills and fills in the valleys” of f. This effect, which was illustrated in Figure 1.10, can be diminished by decreasing h.
2. The asymptotic variance depends on

(a) n; it approaches zero as n becomes large,

(b) h; it increases as h is reduced,

(c) 
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 a property of the kernel,

(d) f(x), the density at point x.

3. The asymptotic IMSE depends on

(a) n; it decreases as n becomes large,

(b) 
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; it is larger for ”wiggly” densities,

(c) j2; k2, which are properties of the kernel, K,

(d) h, the bandwidth.

There is an asymptotically optimal bandwidth, which can then be used to find the minimum attainable IMSE.
1.3.3 Optimal kernels
(a) The 
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can be minimized with respect to the choice of Kernel.

The optimal kernel is the Epanechnikov.

(b) Define the efficiency of a kernel as the ratio of the IMSEEP to the IMSE of the kernel in question.

Table 1 in Zucchini shows that there is little to choose between kernels in terms of efficiency.  

1.4 Selection of the bandwidth
1.4.1 Subjective selection
Experimentation and eyeball-o-metrics: Does it look right?
1.4.2 Selection with reference to some given distribution
One is not assuming that f(x) is a particular distribution; rather one is selecting h which would be optimal if the pdf were of the assumed type.
1.4.3 Cross-validation
Define the Integrate Square Error
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And the estimator of the ISE()
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Use the h that minimizes the MCV

1.4.4 “Plug-in” estimator
The optimal h was defined in terms of minimizing the IMSE, which depended on a function 
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 that described the wiggliness of the true density.  The plug-in estimator provides a technique for estimating 
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and using that to find the h that minimizes IMSE.

1.4.5 Summary and extensions
(a) We can use different bandwidths for different values of x, selecting a small bandwidth in intervals where the observations are plentiful, and a larger bandwidth where they are sparser.
Chapter 2

Kernel Regression

2.1 Introduction
Parametric versus non-parametric approaches: A trade-off between tractability, known properties, and flexibility.

A conditional average based on the whole sample versus a moving average based on a local set of observations on x.

2.2 Moving Averages
Suppose the model is yi = m(xi) + ei.  Estimate m(xi) by using in the weighting function only those x's in the neighborhood of xi.

As with kernel densities, there are many choices for the weighting function. 

2.3 Properties of 
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1. Since the estimator is a weighted average of the yi belonging to an index set it stands to reason that 
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 is not unbiased. The extent of the bias will depend on 

(a) the shape of m(x) in the neighbourhood of x,

(b) the number of x values "near" x,

(c) the weighting function

(d) and the bandwidth h.

Just as in the case of kernel density estimators, 
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 tends to "erode the hills and fills in the valleys". Secondly, note that, at the values of x at which ^m(x) is biased (e.g. x = 4) the bias increases as the number of observations near x decreases. Finally, the bias rises with increasing bandwidth.

2. Var( ^m(x)) depends on the following factors
(a) the variance of the residuals σ2; it is directly proportional to σ2,

(b) the sample size n; it decreases as n increases,

(c) the precise positions of the xi values "near" x,

(d) the shape of the weighting function,

(e) the bandwidth h; it decreases with increasing h.
2.4 Local Linear Regression
Note that in local linear regression the parameters are different for each x, i.e. the local regression curve has to be refitted for each value of x! See figure 2.6.
It is also possible to use a more general weighting function instead of the product of two individual weighting functions used above. Secondly it is also possible to use different kernels for each covariate, e.g. a rectangular kernel for x1 and a Gaussian for x2.

2.4.1 The fitted values and the residuals

The estimated residuals are useful to assess certain aspects of the fit of the model, e.g. to check for heteroscedasticity, and to model their distribution for the purpose of computing confidence intervals for m(x), and for predictions based on the model.

Define the residuals as ei = yi - 
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 and 
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The fitted values are simply linear functions of the observed y values. We say that the

Y values have been linearly filtered. The matrix S is called smoother matrix and is closely

connected to the concept of degrees of freedom of a model, i.e. the equivalent number of

parameters of the model. Among other possibilities one can define the degrees of freedom of a nonparametric smoother as the trace of the smoother matrix, i.e. df( ^m) = tr(S).

2.5 Asymptotic properties of kernel smoothers
1. The asymptotic bias depends on

(a) the bandwidth; it increases with increasing h,

(b) the variance of the kernel, k2,

(c) the curvature of m at the point x, m''(x); the bias is small if m(x) is a straight line near the point x.

2. The asymptotic variance depends on

(a) the residual variance, σ2
(b) the bandwidth; it decreases with increasing h,

(c) the sample size; increasing n reduces the variance,

(d) j2, a property of the kernel,

(e) the pdf f(x); Var ( ^m(x)) is smallest where f(x) has a maximum, i.e. where the most x values are available.

3. The MSE, defined in the usual way, takes into account both the bias and the variance. It depends on the curvature of m and the unknown f(x) that generated the x data.  One would like to choose a bandwidth that minimizes the MSE.

2.6 Cross-Validation
We are interested in assessing the fit of our model.  Split the sample into a calibration subsample and a validation subsample.
The validation subsample can be used to compute a prediction squared error.  But the bandwidth that minimizes the PSE also minimizes the MSE.

The PSE (MSE) can be approximated by the sum of squared errors based on a "one-item-out" method, as outlined in Chapter 1.

2.7 Kernels with Variable Bandwidth
Other things being equal, the larger n the smaller the optimal value of h. Taking this idea one step further, it makes sense to use different bandwidths for different values of x, depending on how much sample information is available "near" x.
One of the most popular of the variable bandwidth techniques is "loess" that is implemented by the R function with the same name (see help(loess) for implementation details). The bandwidth at xi depends on the distance to the nearest neighbor x. In this approach one usually specifies the span or fraction of the sample to be used in constructing the local regression.

Chapter 3

Splines

3.1 Introduction
We talked about splines earlier in the year.  The antecedents of splines are in architecture, where ducks (weights) are placed at knots and a flexible rule is bent to draw a smooth curve through the knots. The ducks are used to hold the ruler in place.  The knots are are placed at points where there is a point of inflection or the curve is changing direction.
Zucchini attributes the spline terminology to shipbuilding.
In any case, our previous exposure to splines was in a parametric approach to fitting a non-linear relationship.

3.2 Regression Splines
The idea here is to partition the range of the covariate into intervals and to fit a polynomial to the data in each interval.
(1) Knots, k of them, define the boundaries of a partition on the interval [a,b] that contains the data.  The exterior knots are the end points a and b.

(2) Fit a polynomial of degree p to each of the k+1 partitions.  

(3) There will be p+1 coefficients that define each polynomial on each partition for a total of (p+1)(k+1) parameters to construct 
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(4) By imposing k restrictions on the parameters we can insure that the 
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 is continuous.  That is, the end points of each polynomial should join its neighbors at the knots.  While the end point restrictions assure continuity, the resulting 
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 may not be smooth.
(5) An additional k restrictions on the derivatives of 
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 at the knots will smooth the fitted curve at the knots.

(6)  Things can be smoothed even further by restricting equality of the second derivatives at the interior knots.

(7) If the chosen polynomial is a cubic then the third derivative of 
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will be piecewise constant.  

The effect of (4), (5) and (6) is to reduce the number of parameters to be estimated freely. 

3.2.1 Details for the case K = 1

In this example Zucchini shows that a cubic on an interval with one knot can be transformed into a model that, computationally, is linear in both variables and coefficients.  Furthermore, the fitted values can be written as 
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.  That is, the spline has a representation as a 'linear smooth' that we saw in the previous chapter.
3.2.2 The general case with K knots
Zucchini shows that the previous result is generalizable to many knots. We know that when x, x2 and x3 are included as RHS variables in a regression then the design matrix can have a collinearity problem.  When done in a spline context the problem is aggravated and the numerical results may be difficult to obtain.  The solution is to use B-splines.
3.2.3 Example
Zucchini's example using data on executive compensation is very informative.  In the example he raises several issues to which one can add others.

(1) The fit of 
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 depends on the degree of the polynomial, although Zucchini makes the argument earlier in the chapter that going beyond p = 3 adds little. A higher order polynomial will decrease the bias of 
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, but increase its variance. 
(2) The fit of 
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 depends on the number of knots.

(3) The fit of 
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 depends on the location of the knots.

(4) Zucchini advocates placement of the knots at the quantiles of the covariate.  I would be inclined to fit a kernel regression and put the knots where there are inflection points.

(5) More knots leads to decreased bias but increased variance.

Reflecting on (1) - (5) one could explore the IMSE for the regression in choosing the number and location of knots.

3.3 Smoothing Splines
The objective is to estimate m(x) with a good fit and with a result that is smooth.  Zucchini considers an objective function which is the sum of the squared errors plus a penalty for the curvature of m(x) over the interval [a, b].

[image: image32.wmf](

)

(

)

(

)

(

)

ò

å

l

+

-

=

b

a

2

n

1

i

2

i

i

dx

x

"

m

x

m

y

                              (3.4)

Result: Among all functions with two continuous derivatives, there is a unique

function that minimizes criterion (3.4); it is a natural cubic spline with knots

at the unique values of x.
(1) Although it sounds like there is a problem in having k approach n, this is not the case because of the smoothing restrictions one is imposing at the knots.

(2) λ determines the degree of smoothness in a fashion similar to the bandwidth in kernel estimation.  One can interpret λ as the shadow cost of smoothness.

3.3.1 Degrees of freedom
In the context of non-parametric models the notion of degrees of freedom has to be generalized because one does not have a well defined fixed number of parameters as one does in the parametric case.
The degrees of freedom of a linear smoother is the trace of S, tr(S). This definition is consistent with the familiar definition for degrees of freedom for a parametric model
In the case of spline smoothing it is more convenient to specify the degrees of freedom than it is to specify λ. That's because λ depends on the units that are used to quantify the data. Secondly, by specifying the degrees of freedom we can compare the resulting smooth with parametric regressions having the same degrees of freedom. The degrees of freedom determine λ, and vice versa.
3.3.2 Example
3.4 Cross-validation for linear smoothers
As was done previously in chapters 1 and 2, one minimizes the one-item-out cross-validation criterion with respect to λ.  Zucchini shows that this is a relatively simple problem for cubic splines.
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