
Appendix A

Big-Oh and Little-Oh

The notation Big-Oh and Little-Oh is used to compare the relative values of two functions,
f(x) and g(x), as x approaches ∞, or 0, depending on which of these two cases is being
considered. We will suppose that g is positive-valued and that x > 0.

A.1 Big-Oh

The case x →∞
f is O(g) if there exist constants A > 0 and x0 > 0 such that

|f(x)|
g(x)

< A for all x > x0 .

The case x → 0

f is O(g) if there exist constants A > 0 and x0 > 0 such that
|f(x)|
g(x)

< A for all x < x0 .

Example A1

The function f(x) = 3x3 + 4x2 is O(x3) as x →∞. (Here g(x) = x3.) We have that

|f(x)|
g(x)

=
3x3 + 4x2

x3
= 3 +

4

x
.

There exist (infinitely) many pairs A, x0 > 0 that show that f is O(x3), for example,
|f(x)|
g(x)

< 4.1 for all x > 40 .

Example A2

The function f(x) = 3x3 + 4x2 is O(x2) as x → 0. Here

|f(x)|
g(x)

=
3x3 + 4x2

x2
= 3x + 4 ,

and, for example, |f(x)|
g(x)

< 4.3 for all x < 0.1 .
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2 APPENDIX A. BIG-OH AND LITTLE-OH

A.2 Little-Oh

The case x →∞ : f is o(g) if lim
x→∞

|f(x)|
g(x)

= 0 .

The case x → 0 : f is o(g) if lim
x→0

|f(x)|
g(x)

= 0 .

Example A3

The function f(x) = 3x3 + 4x2 is o(x4) as x →∞ because

lim
x→∞

|f(x)|
g(x)

= lim
x→∞

3x3 + 4x2

x4
= lim

x→∞

(
3

x2
+

4

x

)
= 0 .

Example A4

The function f(x) = 3x3 + 4x2 is o(x) as x → 0 because

lim
x→0

|f(x)|
g(x)

= lim
x→0

3x3 + 4x2

x
= lim

x→0
(3x2 + 4x) = 0 .

Example A5

The function f(x) = 3x2 + 4x is o(1) as x → 0 because

lim
x→0

|f(x)|
g(x)

= lim
x→0

3x2 + 4x

1
= lim

x→0
(3x2 + 4x) = 0 .



Appendix B

Taylor expansions

This appendix gives a brief justification of the expansions used in Section 1.3.2. Details
can be found in standard calculus texts, for example, Courant R. and John F. (1965)
Introduction to Calculus and Analysis, Wiley, New York.

Suppose that the function f has n + 1 continuous derivatives in the interval [a, a + h], if
h > 0, or [a + h, a], if h < 0. The n-term Taylor approximation for f(a + h) is given by

f(a + h) = f(a) +
h

1!
f (1)(a) +

h2

2!
f (2)(a) + · · ·+ hn

n!
f (n)(a) + Rn(a, h), (B.1)

where f (r)(a) denotes the r-th derivative of f at the point a, and Rn(a, h), called the
remainder, is the error in approximating f(a+h) by the n-degree polynomial (in h) on the
right-hand side.

The remainder can be represented in different forms. The following result is based on a
version of the Lagrange form1: If there exists a positive constant M , such that |f (n+1)(t)| ≤
M for all t ∈ [a, a + h] (or alternatively t ∈ [a + h, a], in the case h < 0) then

|Rn(a, h)| ≤ |h|n+1

(n + 1)!
M .

Thus, regarded as a function of n, for fixed a and h, the term |Rn(a, h)| becomes small as n
increases. Alternatively, regarded as a function of h, for fixed a and n, |Rn(a, h)| becomes
small as h → 0. In the notation explained in Appendix A, Rn(a, h) is o(hn) as h → 0.

Example B1

This example relates to the material in Section 1.3.2. Specifically, we wish to investigate
the behaviour of a two-term Taylor approximation to f(x − zh) as h becomes small, for
fixed values x and z. We assume that f is three times differentiable, and that, in some

1After the Italian-French mathematician Joseph-Louis Lagrange (1736-1813).
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closed interval containing x, the absolute value of it’s third derivative is bounded by some
positive constant M . Applying the expansion (B.1) yields

f(x− hz) = f(x) +
(−hz)

1!
f ′(x) +

(−hz)2

2!
f ′′(x) + R2(x,−zh),

where |R2(x,−zh)| ≤ |zh|3
3!

M . Thus as, h becomes small, we have that

f(x− hz) = f(x)− hzf ′(x) +
h2z2

2
f ′′(x) + o(h2)

Similarly it follows that

f(x− hz) = f(x)− hzf ′(x) + o(h)

and that
f(x− hz) = f(x) + o(1)



Appendix C

The Method of Weighted Least
Squares

The purpose of this appendix is to derive a general formula for the estimator of the para-
meters of the linear model using the method of weighted least squares. We begin with a
very simple case based on the method of ordinary least squares.

Ordinary least squares: A simple case

Considering the model

yi = θ + ei i = 1, . . . , n ,

where E(ei) = 0 and Var(ei) = σ2. The least squares estimator of the parameter θ is the
value which mimimizes the sum of squares of the residuals. A formula for the estimator
can be derived by setting the derivative of the sum of residual squares equal to zero.

RSS(θ) =
n∑

i=1

e2
i =

n∑
i=1

(yi − θ)2

dRSS(θ)

dθ
= −2

n∑
i=1

yi + 2nθ̂
!
= 0

θ̂ =
1

n

n∑
i=1

yi

Weighted least squares: The simple case

The extension to weighted least squares is performed by defining weights w1, w2, . . ., wn

(given constants) and minimizing over the residual weighted sum of squares, RWSS, instead
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of the residual sum of squares, RSS:

RWSS(θ) =
n∑

i=1

wie
2
i =

n∑
i=1

wi(yi − θ)2

dRWSS(θ)

dθ
= −2

n∑
i=1

wi(yi − θ̂)
!
= 0

θ̂ =

n∑
i=1

wiyi

n∑
i=1

wi

Ordinary least squares: The general case

A more convenient way of estimating the parameters in linear regression (especially when
dealing with more parameters) is using a matrix notation.

Consider the model
yi = θ1 + θ2 xi + ei i = 1, . . . , n

This can be written in matrix form as follows:

y = Xθ + e

with y =




y1

y2
...

yn


, X =




1 x1

1 x2
...

...
1 xn


, θ =

(
θ1

θ2

)
, e =




e1

e2
...
en




The residual sum of squares can be minimized by setting the derivative with respect to θ
equal to zero.

RSS(θ) = e′e = (y −Xθ)′(y −Xθ)

= y′y − y′Xθ − θ′X ′y + θ′X ′Xθ = y′y − 2θ′X ′y + θ′X ′Xθ

∂RSS(θ)

∂θ
= −2X ′y + 2X ′Xθ̂

!
= 0

X ′y = X ′Xθ̂

The ordinary least squares estimator of θ is thus given by

θ̂ = (X ′X)−1X ′y (C.1)
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Note that the above derivation is also applicable to the case in which there are p > 1
covariates. Consider the model

yi = θ1 + θ2 x1 i + θ3 x2 i . . . θp+1 xp i + ei i = 1, . . . , n

This model can also be written in matrix form y = Xθ + e, where:

y =




y1

y2
...

yn


, X =




1 x1 1 x2 1 . . . xp 1

1 x2 2 x2 2 . . . xp 2
...

... . . .
1 x1 n x2 n . . . xp n


, θ =




θ1

θ2
...

θp+1


, e =




e1

e2
...
en




Weighted least squares: The general case

The extension to weighted sums of squares is performed by defining a diagonal matrix W ,
whose diagonal elements comprise the weights wi, i = 1, 2, . . . , n:

W =




w1 0
w2

. . .

0 wn




The residual weighted sum of squares (RWSS) is given by
∑n

i=1 wie
2
i = e′We. This is

minimized by setting the derivative of RWSS with respect to θ equal to zero.

RWSS(θ) = (y −Xθ)′W (y −Xθ)

= y′Wy − y′WXθ − θ′X ′Wy + θ′X ′WXθ = y′Wy − 2θ′X ′Wy + θ′X ′WXθ

∂RWSS(θ)

∂θ
= −2X ′Wy + 2X ′WXθ̂

!
= 0

X ′Wy = X ′WXθ̂

θ̂ = (X ′WX)−1X ′Wy (C.2)

The special case in which wi = 1, i = 1, 2, . . . , n reduces to the ordinary least squares
estimator (C.1).


