
Chapter 1

Density estimation

1.1 Introduction

1.1.1 Parametric density estimation

The probability distribution of a continuous-valued random variable X is conventionally
described in terms of its probability density function (pdf), f(x), from which probabilities
associated with X can be determined using the relationship

P (a ≤ X ≤ b) =

∫ b

a

f(x) dx .

The objective of many investigations is to estimate f(x) from a sample of observations
x1, x2, ..., xn . In what follows we will assume that the observations can be regarded as
independent realizations of X.

The parametric approach for estimating f(x) is to assume that f(x) is a member of some
parametric family of distributions, e.g. N(µ, σ2), and then to estimate the parameters of
the assumed distribution from the data. For example, fitting a normal distribution leads
to the estimator

f̂(x) =
1√
2πσ̂

e−(x−µ̂)2/2σ̂2

, x ∈ IR ,

where µ̂ = 1
n

∑n
i=1 xi and σ̂2 = 1

n−1

∑n
i=1(xi − µ̂)2.

This approach has advantages as long as the distributional assumption is correct, or at
least, if it is not seriously wrong. It is easy to apply and it yields (relatively) stable
estimates.
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The main disadvantage of the parametric approach is lack of flexibility. Each parametric
family of distributions imposes restrictions on the shapes that f(x) can have. For exam-
ple, the density function of the normal distribution is symmetrical and bell-shaped, and
therefore is unsuitable for representing skewed densities or bimodal densities.

1.1.2 Histogram density estimation

The idea of the non-parametric approach is to avoid restrictive assumptions about the form
of f(x) and to estimate this directly from the data. A well-known non-parametric estimator
of the pdf is the histogram. It has the advantage of simplicity but it also has disadvantages,
such as lack of continuity. Secondly, in terms of various mathematical measures of accuracy
there exist alternative non-parametric estimators that are superior to histograms.

To construct a histogram one needs to select a left bound, or starting point, x0, and the
bin width, b. The bins are of the form [x0 +(i−1)b, x0 + ib), i = 1, 2, ..., m. The estimator
of f(x) is then given by

f̂(x) =
1

n

Number of observations in the same bin as x

b

More generally one can use bins of different widths, in which case

f̂(x) =
1

n

Number of observations in the same bin as x

Width of bin containing x

The choice of bins, especially the bin widths, has a substantial effect on the shape and
other properties of f̂(x). This is illustrated in the example that follows.

Example 1

We consider a population of 689 of a certain model of new cars. Of interest here is the
amount (in DM) paid by the customers for “optional extras”, such as radio, hubcaps,
special upholstery, etc. . The histogram in Figure 1.1 relates to the entire population.
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Figure 1.1: Histogram of expenditure for all cars in the population.
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Figure 1.2 shows three histogram estimates of f(x) for a random sample of size 10 from
the population, for different bin widths. Note that the estimates are piecewise constant
and that they are strongly influenced by the choice of bin width. The bottom right hand
graph is an example of a so-called kernel estimator of f(x). We will be examining such
estimators in more detail in the following.
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Figure 1.2: Histograms with different bin widths for the sample of size 10 and a kernel
estimate of f(x) for the same sample.

1.2 Kernel density estimation

1.2.1 Weighting functions

From the definition of the pdf, f(x), of a random variable, X, one has that

P (x− h < X < x + h) =

x+h∫

x−h

f(t) dt ≈ 2hf(x)

and hence

f(x) ≈ 1

2h
P (x− h < X < x + h) . (1.1)
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The above probability can be estimated by a relative frequency in the sample, hence

f̂(x) =
1

2h

Number of observations in (x− h, x + h)

n
(1.2)

An alternative way to represent f̂(x) is

f̂(x) =
1

n

n∑
i=1

w(x− xi, h) , (1.3)

where x1, x2, ..., xn are the observed values, and w, a rectangular weighting function, is
defined as

w(t, h) =

{
1
2h

for |t| < h ,
0 otherwise .

It is left to the reader as an exercise to show that f̂(x) defined in (1.3) has the properties
of a pdf, that is f̂(x) ≥ 0 for all x, and

∫∞
−∞ f̂(x) dx = 1.

One way to think about (1.3) is to imagine that a rectangle (height 1
2h

and width 2h) is
placed over each observed point on the x–axis. The estimate of the pdf at a given point
is 1/n times the sum of the heights of all the rectangles that cover the point. Figure 1.3
shows f̂(x) based on rectangular weighting functions for different values of h.
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Figure 1.3: Estimates of f(x) based on rectangular weighting functions.
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We note that the estimates of f̂(x) in Figure 1.3 fluctuate less as the value of h is increased.
By increasing h one increases the width of each rectangle and thereby increases the degree
of “smoothing”.

Instead of using rectangles in (1.3) one could use other weighting functions, for example
triangles:

w(t, h) =

{
1
h
(1− |t|

h
) for |t| < h ,

0 otherwise .

Again it is left to the reader to check that the resulting f̂(x) is indeed a pdf. Examples of
f̂(x) based on the triangular weighting function and four different values of h are shown
in Figure 1.4. Note that here too larger values of h lead to smoother estimates f̂(x).
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Figure 1.4: Estimates of f(x) based on triangular weighting functions.

Another alternative weighting function is the Gaussian:

w(t, h) =
1√
2πh

e−t2/2h2

, −∞ < t < ∞ .

Figure 1.5 shows f̂(x) based on this weighting function for different values of h. Again the
fluctuations in f̂(x) decrease with increasing h.
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Figure 1.5: Estimates of f(x) based on Gaussian weighting functions.

1.2.2 Kernels

The above weighting functions, w(t, h), are all of the form

w(t, h) =
1

h
K

(
t

h

)
, (1.4)

where K is a function of a single variable called the kernel.

A kernel is a standardized weighting function, namely the weighting function with h = 1.
The kernel determines the shape of the weighting function. The parameter h is called
the bandwidth or smoothing constant. It determines the amount of smoothing applied in
estimating f(x). Six examples of kernels are given in Table 1.
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Kernel K(z) Efficiency

Epanechnikov 3
4
√

5
(1− 1

5
z2) for |z| < √

5 1

0 otherwise

Rectangular 1
2

for |z| < 1
√

108
125

≈ 0.9295

0 otherwise

Triangular 1− |z| for |z| < 1
√

243
250

≈ 0.9859

0 otherwise

Biweight 15
16

(1− z2)2 for |z| < 1
√

3087
3125

≈ 0.9939

0 otherwise

Gaussian 1√
2π

e−z2/2 z ∈ IR
√

36π
125

≈ 0.9512

Table 1: Six kernels and their efficiencies (which are defined in Section 1.3.3).

In general any function having the following properties can be used as a kernel:

(a)

∞∫

−∞

K(z) dz = 1 (b)

∞∫

−∞

zK(z) dz = 0 (c)

∞∫

−∞

z2K(z) dz := k2 < ∞ (1.5)

It follows that any symmetric pdf is a kernel. However, non-pdf kernels can also be used,
e.g. kernels for which K(z) < 0 for some values of z. The latter type of kernels have the
disadvantage that f̂(x) may be negative for some values of x.

Kernel estimation of pdfs is charactized by the kernel, K, which determines the shape of the
weighting function, and the bandwidth, h, which determines the “width” of the weighting
function and hence the amount of smoothing. Given the kernel and the bandwidth, the
kernel density estimator of f(x) is:

f̂(x) =
1

n

n∑
i=1

1

h
K

(
x− xi

h

)
(1.6)

The two components K and h determine the properties of f̂(x). Considerable research has
been carried out (and continues to be carried out) on the question of how one should select
K and h in order to optimize the properties of f̂(x). This issue will be discussed in the
sections that follow.
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1.2.3 Densities with bounded support

In many situations the values that a random variable, X, can take on is restricted, for
example to the interval [0, ∞), that is f(x) = 0 for x < 0. We say that the support of
f(x) is [0, ∞). Similarly, if X can only take on values in the interval (a, b) then f(x) = 0
for x 6∈ (a, b); the support of f(x) is (a, b).

In such situations it is clearly desirable that the estimator f̂(x) has the same support as
f(x). Direct application of kernel smoothing methods does not guarantee this property
and so they need to be modified when f(x) has bounded support. The simplest method of
solving this problem is to use a transformation. The idea is to estimate the pdf of a trans-
formed random variable Y = t(X) which has unbounded support, where t is some strictly
monotone function. Suppose that the pdf of Y is given by g(y). Then the relationship
between f and g is given by

f(x) = g(t(x))t′(x) . (1.7)

One carries out the following steps:

(a) Transform the observations yi = t(xi), i = 1, 2, ..., n.

(b) Apply the kernel method to estimate the pdf g(y).

(c) Estimate f(x) using f̂(x) = ĝ(t(x))t′(x).

Example 2
Suppose that f(x) has support [0, ∞). A simple transformation t : [0, ∞) → (−∞, ∞)

is the log-transformation, i.e. t(x) = log(x). Here t′(x) = d log(x)
dx

= 1
x

and so

f̂(x) = ĝ(log(x))
1

x
(1.8)

The resulting estimator has support [0, ∞). Figure 1.6 provides an illustration for this
case for the sample considered in Example 1.
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Figure 1.6: Kernel estimates of pdf with support [0,∞).

(a) The graph on the top left gives the estimated density f̂(x) obtained without restric-
tions on the support. Note that f̂(x) > 0 for some x < 0.

(b) The graph on the top right shows a modified version of f̂(x) obtained in (a), namely

f̂c(x) =





f̂(x)
∞R
0

f̂(x) dx
for x ≥ 0

0 for x < 0

(1.9)

Here f̂c(x) is set equal to zero for x < 0 and the f̂(x) is rescaled so that the area
under the estimated density equals one.

(c) The bottom left graph shows a kernel estimator of g(y), that is the density of Y =
log(X).

(d) The bottom right graph shows the transformed estimator f̂(x) obtained via ĝ(y).

Example 3
Suppose that the support of f(x) is (a, b). Then a simple transformation t : (a, b) →
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(−∞, ∞) is t(x) = log
(

x−a
b−x

)
(analogous to the logit–transformation in logistic regression).

Here t′(x) = 1
x−a

+ 1
b−x

and so

f̂(x) =

{
ĝ

(
log

(
x−a
b−x

)) (
1

x−a
+ 1

b−x

)
for a < x < b

0 otherwise
(1.10)

Figure 1.7 provides an illustration of (1.10) for a = 0 and b = 27. The four figures shown
are analogous to those in Example 2 but with

f̂c(x) =





f̂(x)
bR

a
f̂(x) dx

for a < x < b

0 otherwise

(1.11)

for the graph on the top right.
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Figure 1.7: Kernel estimates of pdf with support [0,27].

The above three examples illustrate that the transformation procedure can lead to a con-
siderable change in the appearance of the estimate f̂(x). By applying kernel smoothing to
the transformed values one is, in effect, applying a different kernel and bandwidth at each
point in the estimation of f(x).
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1.3 Properties of kernel estimators

There are various ways to quantify the accuracy of a density estimator. We will focus
here on the mean squared error (MSE) and its two components, namely the bias and the
variance. We note that the MSE of f̂(x) is a function of the argument x:

MSE(f̂(x)) = E(f̂(x)− f(x))2 (1.12)

= E(f̂ 2(x)− 2f̂(x)f(x) + f 2(x))

= Ef̂ 2(x)− 2f(x)Ef̂(x) + f 2(x) + (Ef̂(x))2 − (Ef̂(x))2

= (Ef̂(x)− f(x))2 + Ef̂ 2(x)− (Ef̂(x))2

= Bias2(f̂(x)) + Var(f̂(x))

A measure of the global accuracy of f̂(x) is the integrated mean squared error (IMSE):

IMSE(f̂) =

∞∫

−∞

E(f̂(x)− f(x))2 dx (1.13)

=

∞∫

−∞

MSE(f̂(x)) dx

=

∞∫

−∞

Bias2(f̂(x)) dx +

∞∫

−∞

Var(f̂(x)) dx

The IMSE is the sum of the integrated squared bias and the integrated variance. We
consider each of these components in turn.

1.3.1 Bias, variance and mean squared error

Ef̂(x) =
1

n

n∑
i=1

E

(
1

h
K

(
x− xi

h

))

=
1

n

n∑
i=1

1

h

∞∫

−∞

K

(
x− t

h

)
f(t) dt

=
1

h

∞∫

−∞

K

(
x− t

h

)
f(t) dt

The transformation z = x−t
h

(i.e. t = x − hz, dt
dz

= −h, z → −∞ as t → ∞, z → ∞ as
t → −∞) yields:
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Ef̂(x) = −
−∞∫

∞

K(z)f(x− hz) dz =

∞∫

−∞

K(z)f(x− hz) dz (1.14)

This formula shows that the expectation of f̂(x) is a weighted average of the values of the
function f , centered at the point x, where the weights are determined by the kernel and
the bandwidth. To illustrate this, consider again the population in Example 1, namely the
amount paid by customers for optional extras when puchasing a particular model of car.
The population density is given in Figure 1.8.
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Figure 1.8: Population density f(x) of amount paid for optional extras.

Note that the density shown in Figure 1.8 has been estimated from the population with a
kernel density estimator too and that, in contrast to this example, in general the population
density is completely unknown.

Figure 1.9 displays Ef̂(x) and f(x) for a Gaussian kernel and for four different values
of the bandwidth, h. Also shown in these displays (in grey) are the weighting functions.
These incorporate both the kernel and the bandwidth.
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Figure 1.9: Ef̂(x), f(x) and the weighting function w(t, h) = 1
h
K( t

h
) for different band-

widths.

Note that, as the bandwidth increases, so the difference between Ef̂(x) and f(x) becomes
greater near the peaks and the valleys of f(x); the function Ef̂(x) becomes an increasingly
smoothed version of f(x). That’s because the weighting function becomes more “spread
out”.

In general f̂(x) is a biased estimator of f(x):

Bias(f̂(x)) = Ef̂(x)− f(x) =

∞∫

−∞

K(z)f(x− hz) dz − f(x) (1.15)

The bias for our example is displayed in Figure 1.10. Note that the bias increases in
absolute value as the bandwidth, h, increases whereas it is independent of the sample size
n. The same is true for the integrated squared bias (ISB).

We now consider the variance of the estimator.
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Var(f̂(x)) = Var

(
1

nh

n∑
i=1

K

(
x− xi

h

))

=
1

n2h2

n∑
i=1

Var

(
K

(
x− xi

h

))

Now x1, x2, . . . , xn, are independently distributed, and

Var

(
K

(
x− xi

h

))
= E

(
K2

(
x− xi

h

))
−

(
E K

(
x− xi

h

))2

=

∞∫

−∞

K2

(
x− t

h

)
f(t) dt−




∞∫

−∞

K

(
x− t

h

)
f(t) dt




2

= h

∞∫

−∞

K2(z)f(x− hz) dz −

h

∞∫

−∞

K(z)f(x− hz) dz




2

= h

∞∫

−∞

K2(z)f(x− hz) dz − h2(Ef̂(x))2

The second-last step follows from the transformation z = x−t
h

(i.e. t = x − hz, dt
dz

= −h,
z → −∞ as t →∞, z →∞ as t → −∞). It follows that

Var(f̂(x)) =
1

nh

∞∫

−∞

K2(z)f(x− hz) dz − 1

n
(Ef̂(x))2 (1.16)
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Figure 1.10: The bias of f̂(x), the integrated squared bias (ISB), and the weighting function
for different bandwidths.

As is to be expected, both Var(f̂(x)), and hence also the integrated variance, decrease
with increasing sample size, n, as illustrated in Figure 1.11. They also both decrease with
increasing bandwidth. Thus increasing h has desirable effect of reducing the variance, but
it also has the undesirable effect of increasing (squared) bias, as was seen in Figure 1.10.
Figure 1.11 displays the variance for different sample sizes and bandwidths.
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Figure 1.11: The variance V ar(f̂(x)), the integrated variance (IV) and the weighting
function for different bandwidths.

The MSE, namely the sum of the variance and the squared bias, is displayed in Figure
1.12. Also given are values of the IMSE. As is to be expected, both the MSE and IMSE
decrease with increasing sample size. Now consider the behaviour of MSE and IMSE as
functions of h for a fixed sample size. Compare the values of MSE(f̂(x)), for any fixed
value of x (e.g. x = 10) as h increases, i.e. compare the corresponding points of the curves
in the four panels. As h increases MSE(f̂(x)) initially decreases and then increases. The
same goes for the values of the IMSE. This illustrates the point that the value of h that
minimizes the MSE(f̂(x)) should neither be too small (otherwise the variance becomes
large) nor too large (otherwise the squared bias becomes large). We will regard the best
bandwidth for estimating f(x) as that which minimizes the MSE(f̂(x)).
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Figure 1.12: The mean squared error (MSE) and values of the integrated mean squared
error (IMSE) for different sample sizes and bandwidths.

Figure 1.13 displays the IMSE and its two components, the integrated squared bias and
the integrated variance, as functions of h for different sample sizes. This provides a clearer
image of the effect noticeable in Figure 1.12, namely that the IMSE initally decreases and
then increases. The optimal bandwith changes for different n. For n = 15, 25, 50, 100
it is hopt = 1.9, 1.6, 1.3, 1.05, respectively. Thus, as n increases the optimal bandwidth
decreases. To see why this makes sense note, first, that the integrated squared bias does
not depend on the sample size. (The curve for the ISB is the same in all four panels.)
However, the integrated variance (IV) decreases as n increases, thus contributing less to
the IMSE. Thus the minimum of the IMSE occurs at a smaller value of h.
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Figure 1.13: Integrated squared bias (ISB), integrated variance (IV), and integrated mean
squared error (IMSE) as functions of the bandwith for different sample sizes. In each case
the optimal bandwidth is shown.

Intuitively, increasing the sample size increases the amount of information available to
estimate f ; it enables us to estimate f in greater detail. Thus when n is very large we
can distinguish the smaller dips and bumps of f with confidence, i.e. we can use a smaller
bandwidth, a “greater magnification”. If n is small then we have to make do with “less
magnification”, i.e. a larger bandwidth.

The expectation, variance and mean squared error of f̂(x), as well as the integrated squared
bias, integrated variance and IMSE, depend not only on the kernel, K and the bandwidth,
h, but also on the pdf f(x). We are free to choose K and h but not, of course, f(x). The
example that was used to illustrate these dependencies is atypical, in that f(x) was known,
whereas in practice f(x) is unknown. (If it were known then we wouldn’t need to estimate
it.) So, although there exists an optimal bandwidth, it can’t be determined in practice;
it can only be estimated. To develop estimators it is useful to examine the asymptotic
behaviour of f̂(x), i.e. to study its bias, variance and MSE as n becomes large.
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1.3.2 Asymptotic properties

It was illustrated in the previous section that the optimal bandwidth of a kernel estimator
decreases as the sample size increases. In examining the asymptotic properties of f̂(x) we
will therefore investigate the case in which h is decreased as n increases. We will assume
that h decreases more slowly than 1

n
, as n becomes large. Thus

lim
n→∞

h = 0 and lim
n→∞

1

nh
= 0 (1.17)

We will also assume that f is sufficently often differentiable, and that the kernel satisfies
conditions (1.5).

We start by examining the behaviour of Ef̂(x) =
∫∞
−∞ K(z)f(x − hz) dz as n → ∞.

Expanding f(x− hz) in a Taylor series (see appendix B for details) yields

f(x− hz) = f(x)− hzf ′(x) +
1

2
(hz)2f ′′(x) + o(h2) , (1.18)

where o(h2) represents terms that converge to zero faster than h2 as h approaches zero.
Thus

Ef̂(x) =

∞∫

−∞

K(z)f(x) dz −
∞∫

−∞

K(z)hzf ′(x) dz +

∞∫

−∞

K(z)
(hz)2

2
f ′′(x) dz + o(h2)

= f(x)

∞∫

−∞

K(z) dz − hf ′(x)

∞∫

−∞

zK(z) dz +
h2

2
f ′′(x)

∞∫

−∞

z2K(z) dz + o(h2)

= f(x) +
h2

2
k2f

′′(x) + o(h2) (1.19)

where k2, the variance of the kernel, is defined in (1.5). Thus, for small values of h,

Bias f̂(x) ≈ h2

2
k2f

′′(x) (1.20)

The asymptotic bias depends on

(a) h, where the bias approaches zero as h becomes small,

(b) k2, the variance of the kernel,

(c) f ′′(x), the curvature of f at the point x.
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The curvature of f is negative near the peaks of f , leading to negative bias, and positive
near the valleys, leading to positive bias. On average f̂ “erodes the hills and fills in the
valleys” of f . This effect, which was illustrated in Figure 1.10, can be diminished by
decreasing h.

We now consider the behaviour of Var(f̂(x)) as n increases (and h decreases). Note that,
from appendix B and (1.19) follows that

f(x− hx) = f(x) + o(1)

Ef̂(x) = f(x) + o(1)

and hence expression (1.16) can be written in the form

Var(f̂(x)) =
1

nh

∞∫

−∞

K2(z)(f(x) + o(1)) dz − 1

n
(f(x) + o(1))2

=
1

nh

∞∫

−∞

K2(z)f(x) dz + o

(
1

nh

)
.

Now, by assumption limn→∞ 1
nh

= 0 and so for large n, we have:

Var(f̂(x)) ≈ 1

nh
f(x)

∞∫

−∞

K2(z) dz

=
1

nh
f(x)j2 (1.21)

The asymptotic variance depends on

(a) n; it approaches zero as n becomes large,

(b) h; it increases as h is reduced,

(c) j2 =
∞∫
−∞

K2(z) dz, a property of the kernel,

(d) f(x), the density at point x.
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The above approximations for the bias and the variance of f̂(x) lead to

MSE(f̂(x)) = Bias2(f̂(x)) + Var(f̂(x))

≈ 1

4
h4k2

2(f
′′(x))2 +

1

nh
f(x)j2. (1.22)

Integrating (1.22) over x yields the integrated mean squared error:

IMSE(f̂) ≈ 1

4
h4k2

2β(f) +
1

nh
j2 . (1.23)

where β(f) =
∫∞
∞ (f ′′(x))2 dx is the integrated squared curvature of f(x).

The asymptotic IMSE depends on

(a) n; it decreases as n becomes large,

(b) β(f); it is larger for ”wiggly” densities,

(c) j2, k2, which are properties of the kernel, K,

(d) h, the bandwidth.

Of central importance is the behaviour of IMSE(f̂) as a function of the bandwidth h. Each
of the above components is positive, and thus IMSE(f̂) is of the form ah4 + bh−1, with
a, b > 0, which is a U-shaped function. Setting the derivative with respect to h equal to
zero, we see that the function has a minimum as the bandwidth h = (b/4a)1/5, i.e.

hopt =

(
1

n

γ(K)

β(f)

)1/5

, (1.24)

where γ(K) = j2k
−2
2 =

(∫∞
∞ K2(z) dz

) (∫∞
∞ z2K(z) dz

)−2
. We note that hopt depends on

the sample size, n, and the kernel, K. However, it also depends on the unknown pdf,
f , through the functional β(f). Thus, as it stands, expression (1.24) is not applicable
in practice. However, the “plug-in” estimator of hopt, to be discussed later, is simply
expression (1.24) with β(f) replaced by an estimator.

Substituting hopt in (1.23) gives the minimum attainable value of IMSE for the given sample
size, pdf and kernel:

IMSEopt(f̂) =
5

4

(
β(f)j4

2k
2
2

n4

)1/5

. (1.25)
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1.3.3 Optimal kernels

The asymptotic IMSE(f̂) given in (1.23) can also be minimized with respect to the kernel
used. It can be shown (see e.g. Hodges and Lehmann, 1956) that the Epanechnikov kernel
is optimal in this respect:

K(z) =

{
3

4
√

5
(1− 1

5
z2) for |z| < √

5

0 otherwise

This result together with 1.25 enables one to examine the impact of kernel choice on
IMSEopt(f̂). The efficiency of a kernel, K, relative to the (optimal) Epanechnikov kernel,
KEP , is defined as

Eff(K) =

(
IMSEopt(f̂) using KEP

IMSEopt(f̂) using K

)5/4

=

(
k2

2j
4
2 using KEP

k2
2j

4
2 using K

)1/4

(1.26)

The reason for the power 5/4 in 1.26 is that for large n the optimal IMSE will be the
same whether one uses n observations and the kernel K or whether one uses n Eff(K)
observations and the kernel KEP . The efficiencies for a number of well-known kernels are
given in Table 1. It is clear that the selection of the kernel has rather limited impact on
the efficiency. The rectangular kernel, for example, has an efficiency of approximately 93%.
This can be interpreted as follows: The IMSEopt(f̂) obtained using an Epanechnikov kernel

with n = 93 is approximately equal to the IMSEopt(f̂) obtained using a rectangular kernel
with n = 100.

1.4 Selection of the bandwidth

Selection of the bandwidth for kernel estimators is a subject of considerable research. We
will outline four popular methods. We consider again the data in Example 1; the expen-
ditures for optional extras for a polulation of 689 cars. Figure 1.14 shows the (estimated)
pdf for the population and a histogram for a random sample of size n = 20.
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Figure 1.14: The pdf for the population of the car example and a histogram for a sample
of size 20.

1.4.1 Subjective selection

One can experiment by using different bandwidths and simply select one that looks right
for the type of data under investigation. Figure 1.15 shows kernel density estimation (based
on a Gaussian kernel) of f(x) using 4 different bandwidths. Also shown is the density of
the population. The latter is usually unknown in practice (otherwise we wouldn’t need
to estimate it using a sample). The bandwidth h = 1 seems to be too small as the two
peaks at x ≈ 20 and x ≈ 25 correspond to single observations. On the other hand h = 8,
and possibly even h = 4, are too large because there seem to be two distinct groups of
observations (centered at x ≈ 3 and x ≈ 12) suggesting that f(x) is bimodal. Therefore it
would seem that 1 < h < 4 is reasonable.
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Figure 1.15: The pdf for the car example and kernel density estimates using a Gaussian
kernel and different bandwidths.

1.4.2 Selection with reference to some given distribution

Here one selects the bandwidth that would be optimal for a particular pdf. Convenient is
the normal distribution. We note that one is not assuming that f(x) is normal; rather one
is selecting h which would be optimal if the pdf were normal. For the normal distribution
it can be shown that

β(f) =

∞∫

−∞

f ′′(x)2 dx =
3σ−5

8
√

π

and using a Gaussian kernel leads to

hopt = σ

(
4

3n

)1/5

≈ 1.06σ

n1/5
. (1.27)

The normal distribution is not a “wiggly” distribution; it is unimodal and bell-shaped.
It is therefore to be expected that (1.27) will be too large for multimodal distributions.
Secondly to apply (1.27) one has to estimate σ. The usual estimator, the sample variance,
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is not robust; it overestimates σ if some outliers (extreme observations) are present and
thereby increases ĥopt even more. To overcome these problems Silverman (1986) proposed
the following estimator

ĥopt =
0.9σ̂

n1/5
, (1.28)

where σ̂ = min(s,R/1.34), where s2 = 1
n−1

∑n
i=1(xi − x)2 and R is the interquartile range

of the data. The constant 1.34 is derived from the fact that for a N(µ, σ2) random variable,
X, one has P{|X − µ| < 1.34 σ} = 0.5.

The estimator (1.28) is used as the default option in the R function density. It is also
used as a starting value in some more sophisticated iterative estimators for the optimal
bandwidth. The top right-hand graph in Figure 1.16 shows the estimated density, with
this method of estimating hopt.

1.4.3 Cross-validation

The technique of cross-validation will be discussed in more detail in the chapter on model
selection. At this point we will only outline its application to the problem of estimating
optimal bandwidths. By definition, the integrated squared error, ISE, is

ISE(f̂) =

∞∫

−∞

(f̂(x)− f(x))2 dx

=

∞∫

−∞

f̂ 2(x) dx− 2

∞∫

−∞

f̂(x)f(x) dx +

∞∫

−∞

f 2(x) dx

The third term does not depend on the sample or on the bandwidth. An approximately
unbiased estimator of the first two terms is given by the mean cross validation criterion:

M̂CV (f̂) =
1

n

n∑
i=1

∞∫

−∞

f̂ 2
−i(x) dx− 2

n

n∑
i=1

f̂−i(xi) , (1.29)

where f̂−i(x) is the estimated density at the argument x using the original sample apart

from observation xi. One can show that M̂CV is an estimator of the IMSE(f̂) (based
on n− 1 observations and apart from the constant term

∫∞
−∞ f 2(x) dx). In order to select

the bandwidth, one computes M̂CV (f̂) for different values of h and estimates the optimal

value, hopt, using the h which minimizes M̂CV (f̂). The top left hand graph in Figure 1.16

shows the curve M̂CV (f̂) for the sample of car data. The bottom left-hand graph shows
the corresponding estimated density.
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1.4.4 “Plug-in” estimator

The idea developed by Sheather and Jones (1991) is to estimate h from (1.23) by applying
a separate smoothing technique to estimate f ′′(x) and hence β(f ′′). For details see, e.g.
Wand and Jones (1995), Section 3.6. An R function to carry out the computations is avail-
able in the R library sm of Bowman and Azzalini (1997). The resulting density estimator
is shown in in the bottom right hand graph in Figure 1.16.
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Figure 1.16: The cross-validation criterion (top left) and the estimated pdf using three
different bandwidth selectors, namely cross-validation (bottom left), normal-based (top
right) and plug-in (bottom right).

In this particular example, having only n = 20 observations, the criteria have been unable
to select a bandwidth that both leads to a smooth density estimator and identifies the two
peaks which we know are present in the population. Clearly the bandwidth with reference
to the normal is inappropriately large in this example.

These bandwidth selectors represent only a sample of the many suggestions that have been
offered in the recent literature. Some alternatives are described in Wand and Jones (1995)
in which the theory is given in more detail. These authors also offer recommendations
regarding which estimators should be used. The plug-in estimator outlined above is one of
their recommendations.
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1.4.5 Summary and extensions

The above discussion has repeatedly emphasized the fact that the choice of bandwidth has
a strong influence on the properties of kernel density estimators. One of the main points
is that, as the sample size increases so h should be decreased, and vice versa. Throughout
the discussion we only considered the option of selecting a single value of h to estimate
f(x) for all x; we have focused on trying to minimize (1.23) with respect to h. However,
we could focus on minimizing (1.22) instead, in which case h would depend on x. In other
words we can use different bandwidths for different values of x, selecting a small bandwidth
in intervals where the observations are plentiful, and a larger bandwidth where they are
sparser. An account of such variable bandwidth (or local) kernel density estimators is given,
for example, in Section 2.10 of Wand and Jones (1995), and in Section 5.3 of Silverman
(1986). We will discuss one variable-bandwidth method in the the next chapter, in the
context of kernel regression

Kernel density estimation is also applicable to multivariate pdfs. Although the technical
and computational details for the mutivariate case are a little more complicated, the basic
idea, and the properties of the estimators, are analogous to those that we have discussed
for univariate pdfs. For information on this topic see, for example, Chapter 4 in Wand and
Jones (1995), or Chapter 5 in Silverman (1986).

It is also possible to provide approximate confidence bands for the estimated pdfs. To
emphasize their approximate nature, these are sometimes called variability bands rather
than confidence bands. For details see, for example, Bowman and Azzalini (1997), Section
2.3.


