
Chapter 2

Kernel Regression

2.1 Introduction

Regression analysis is a method for quantifying the relationship between a target or de-
pendent variable, y, and one or more predictor variables (also called explanatory or in-
dependent variables, or covariates), x. We start with the case in which there is a single
predictor, and denote the observations as (x1, y1), (x2, y2), ..., (xn, yn).

Parametric modelling is carried out by examining the scatterplot of the data, postulating
a parametric model, such as a simple linear model:

yi = θ1 + θ2 xi + ei, i = 1, 2..., n,

or a more complex linear model, such as a cubic relationship:

yi = θ1 + θ2 xi + θ3 x2
i + θ4 x3

i + ei, i = 1, 2..., n,

where the ei are independently and identically distributed (iid) with E(ei) = 0 and
Var(ei) = σ2. The θ–parameters can be estimated using the method of least squares,
which is described in Appendix C, and σ2 using the mean square of the estimated residu-
als.

Parametric modelling enjoys a number of advantages. Firstly, the method is easy to apply
and to understand. The properties of the estimators are known and there is a methodology
available to compute confidence intervals, to carry out hypothesis tests, diagnostic checking
etc.. But the parametric approach suffers one major shortcoming, namely its lack of
flexibility.

The nonparametric approach avoids making assumptions about the specific form of the
relationship between the x and y. Instead one assumes that

yi = m(xi) + ei,

where m(xi) represents some smooth function, and that the ei are iid with E(ei) = 0 and
Var(ei) = σ2. Figure 2.1 illustrates the two approaches.
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Figure 2.1: Parametric and nonparametric models.

2.2 Moving Averages

While the parametric model is determined by the parameters θ (and σ2), the nonparametric
approach tries to fit some function m(x) to the data (Figure 2.1). The idea is to estimate
m(x) by averaging over the y–values “near” the point x. Define J(x, h) = {i : |xi−x| < h}
as the set of indices whose corresponding x–values are “near” x (in this case closer than
h). Let n(x, h) be the number of indices in J(x, h). Then, the local average that is used
to estimate m(x) at a point x is given by

m̂(x) =

{ 1
n(x,h)

∑
i∈J(x,h)

yi for n(x, h) 6= 0

not defined for n(x, h) = 0
.

Alternatively, and equivalently, m̂(x) can be expressed as a weighted average of all the
y–values. The weighting function here is given by

w(x− xi, h) =

{
1 if |x− xi| < h
0 if |x− xi| ≥ h ,

and the estimator is given by

m̂(x) =





nP
i=1

w(x−xi,h)yi

nP
i=1

w(x−xi,h)
for

n∑
i=1

w(x− xi, h) 6= 0

not defined for
n∑

i=1

w(x− xi, h) = 0

Figure 2.2 shows m̂(x) and the weights needed to estimate m(4) using moving averages
with different bandwidths. It is obvious that increasing the bandwidth smoothes the overall
shape of m̂, however, due to the rectangular weighting function, in detail m̂ is not smooth
but has the shape of a step function.
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Figure 2.2: Local averaging with a rectangular weighting function and different bandwidths.

The advantage of the representation as weighted average is that one can also use other
weighting functions instead of the rectangular weighting function used above, for example
the Gaussian weighting function which is given below.

Rectangular weighting function: w(z, h) =

{
1 for |z| < h
0 otherwise

Gaussian weighting function: w(z, h) = 1√
2π h

e−
1
2(

z
h)

2

, −∞ < z < ∞

For convenience we will sometimes use the following briefer notation:

wi = w(x− xi, h) and vi = wi/

n∑
j=1

wj , i = 1, 2, . . . , n,

though it must be kept in mind that the weights, wi, and the normalized weights, vi,
are functions of x, the values of the covariate, x1, x2, . . . , xn, and the bandwidth, h. The
estimator can be written as

m̂(x) =

n∑
i=1

wiyi

n∑
i=1

wi

=
n∑

i=1

vi yi (2.1)
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The estimator m̂(x) based on the Gaussian weighting function and the respective weights
wi for different x–values and bandwidths h are given in Figure 2.3. Here, due to the shape
of the Gaussian weighting function m̂ is also smooth in detail.
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Figure 2.3: Local averaging with a Gaussian weighting function and different bandwidths.

2.3 Properties of m̂(x)

The expectation of m̂(x) is given by

E m̂(x) = E
n∑

i=1

vi yi =
n∑

i=1

viE yi =
n∑

i=1

vi m(xi) (2.2)

It follows that, in general, Em̂(x) 6= m(x), i.e. m̂(x) is a biased estimator of m(x). As will
be shown later, the bias of m̂(x) depends on the following factors:

— the shape of m(x) in the neighbourhood of x,

— the number of xi–values “near” x,

— the weighting function, and especially the bandwidth h.

Figure 2.4, which displays m(x) and E m̂(x) for different sample sizes and bandwidths,
illustrates the effect of the above factors.
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Figure 2.4: m(x) and E m̂(x) for different sample sizes and bandwidths.

Notice that the bias is greatest near x = 4, where the curvature of m(x) is greatest. Just
as in the case of kernel density estimators, m̂ tends to “erode the hills and fill in the
valleys”. Secondly, note that, at the values of x at which m̂(x) is biased (e.g. x = 4) the
bias increases as the number of observations near x decreases. Finally, the bias rises with
increasing bandwidth.

Note that E m̂(x) can only be computed if m(x) is known — which is not the case in
general — and that it does not depend on the yi–values but on the m(xi)–values. For that
reason the points shown in Figure 2.4 mark the (xi,m(xi))–combinations instead of the
(xi, yi)–combinations which were given in the preceding figures.

The variance of m̂(x) is obtained by making use of the assumption that the ei, and hence
the yi, are independently distributed.

Var (m̂(x)) = Var

(
n∑

i=1

vi yi

)
=

n∑
i=1

v2
i Var (yi)

The variance of yi is given by

Var(yi) = Var(m(xi) + ei) = Var(ei) = σ2

and thus

Var (m̂(x)) =
n∑

i=1

v2
i σ2 . (2.3)
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In general Var(m̂(x)) depends on the following factors (for a derivation of these results see
Chapter 2.5):

— the variance of the residuals σ2; it is directly proportional to σ2,

— the sample size n; it decreases as n increases,

— the precise positions of the xi–values “near” x,

— the shape of the weighting function,

— the bandwidth h; it decreases with increasing h.

Figure 2.5, which displays m(x) and Var(m̂(x)) for different sample sizes and bandwidths,
illustrates the effect of some of these factors (an additional analysis of the influence of the
bandwidth h on the variance is covered in Assignment 4).

0 1 2 3 4 5 6 7 8 9 10

0

2

4

6

8

10

h = 1.5 and n = 50

x

5 
x 

V
ar

(m̂
(x

))

m(x)

5 x Var(m̂(x))

 weighting function

0 1 2 3 4 5 6 7 8 9 10

0

2

4

6

8

10

h = 0.8 and n = 50

x

5 
x 

V
ar

(m̂
(x

))

m(x)

5 x Var(m̂(x))

 weighting function

0 1 2 3 4 5 6 7 8 9 10

0

2

4

6

8

10

h = 1.5 and n = 20

x

5 
x 

V
ar

(m̂
(x

))

m(x)

5 x Var(m̂(x))

 weighting function

0 1 2 3 4 5 6 7 8 9 10

0

2

4

6

8

10

h = 0.8 and n = 20

x

5 
x 

V
ar

(m̂
(x

))

m(x)

5 x Var(m̂(x))

 weighting function

Figure 2.5: Variance of m̂(x) for different sample sizes and bandwidths.

Notice that Var(m̂(x)) increases substantially at the “ends”; that is because there are fewer
observations near these values of x. Furthermore, the variance decreases with increasing
sample size n and bandwidth h.

Analogue to the expectation, the variance V ar(m̂(x)) can only be computed if m(x) is
known and does not depend on the yi–values but on the m(xi)–values. Therefore the points
given in Figure 2.5 mark the (xi,m(xi))–combinations instead of the (xi, yi)–combinations
again.
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Although m̂(x), based on moving averages, provides a flexible estimator of m(x), it can be
improved in certain respects. One is the “end effect”: m̂(x) tends to be “too horizontal”
at the edges. This leads to a high bias unless m(x) is approximately constant at the ends.
The next section describes an alternative estimator which has the additional advantage of
being (asymptotically) “design adaptive”, which means that its bias does not depend on
the pattern of the design points, i.e. the positions of the xis (see e.g. Fan (1992),(1993)).

2.4 Local Linear Regression

The method of moving averages for nonparametric regression can be extended in several
ways. E.g. consider the following approaches for estimating m(x):

(a) Fit the model yi = θ1 + ei using the method of weighted least squares with weights

wi = w(xi−x, h). Here one estimates θ1 by minimizing
n∑

i=1

wie
2
i . This yields m̂(x) = θ̂1

and is precisely the “moving average” estimator discussed in the previous section.

(b) Fit the model yi = θ1 + θ2xi + ei using the method of weighted least squares, i.e.

estimate θ1 and θ2 by minimizing
n∑

i=1

wie
2
i . This yields m̂(x) = θ̂1 + θ̂2x.

(c) Fit the model yi = θ1 + θ2xi + θ3x
2
i + ei using the method of weighted least squares,

i.e. estimate θ1, θ2 and θ3 by minimizing
n∑

i=1

wie
2
i . This yields m̂(x) = θ̂1 + θ̂2x+ θ̂3x

2.

For a short introduction to the method of weighted least squares see Appendix C. Note that
in local linear regression the θ–parameters are different for each x, i.e. the local regression
curve has to be refitted for each value of x!

Figure 2.6 illustrates the three approaches to estimate m(2) and m(8) using a rectangular
weighting function (top) and a Gaussian weighting function (bottom). In addition, m̂ is
given for all cases. Again it becomes clear that it is not reasonable to apply a rectangular
weighting function in nonparametric regression since the resulting estimator m̂ is not a
smooth function.
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Figure 2.6: Estimating m(2) and m(8) in local linear regression using a constant (left), a linear

function (middle) and a quadratic function (right) with a rectangular (top) and a Gaussian

weighting function (bottom).

Of course it is possible to use a local cubic function instead of a local straight line or
quadratic. The formulae are easy to derive — in fact they can be regarded as a special
case of the local multivariate regression procedure. However, in practice the main gain is
in going from a local constant to a local straight line and there is seldom any advantage in
using a higher degree polynomial in the context of local regression. We therefore restrict
our attention to (b).

It is also possible, and usual, to use alternative weighting functions, such as the tricube
weighting function; it is simply a matter of using the appropriate weights wi when esti-
mating the parameters using the method of weighted least squares.

The computations can be carried out more efficiently if one uses a slightly different repre-
sentation of the model (b), namely

yi = θ1 + θ2(xi − x) + ei , i = 1, 2, ..., n .

By centering the observations around the point x, the “local regression line” estimator of
m(x) becomes simply m̂(x) = θ̂1, where
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(
θ̂1

θ̂2

)
= (X ′WX)−1X ′Wy ,

y =




y1

y2
...

yn


 , X =




1 (x1 − x)
1 (x2 − x)
...

...
1 (xn − x)


 , W =




w1 0 . . . 0
0 w2 . . . 0
...

...
. . .

...
0 . . . . . . wn


 ,

and where wi = w(xi − x, h) is the weight of the i-th observation at the point x. For a
derivation of the estimator θ̂ see Appendix C. Note that the weighting function is quite
general in this formula — one can use a rectangular, Gaussian or any other kernel — and
that with this representation, too, the parameters θ1 and θ2 are different for each x and so
θ̂ has to be recomputed for each value of x.

An advantage of using this matrix formulation is that it is easy to generalize to the case
in which there are several covariates. Consider, for example, the case with two covariates
where the observations are denoted by (x11, x21, y1), (x12, x22, y2), ..., (x1n, x2n, yn). The
model is given by

yi = m(x1i, x2i) + ei , i = 1, 2, ..., n .

We can now fit local planes to the observations:

yi = θ1 + θ2x1i + θ3x2i + ei , i = 1, 2, .., n .

Again it is computationally convenient to use a centered model instead to estimate m(x1, x2):

yi = θ1 + θ2(x1i − x1) + θ3(x2i − x2) + ei , i = 1, 2, .., n .

The resulting estimator is given by m̂(x1, x2) = θ̂1, where



θ̂1

θ̂2

θ̂3


 = (X ′WX)−1X ′Wy,

and

y =




y1

y2
...

yn


 , X =




1 (x11 − x1) (x21 − x2)
1 (x12 − x1) (x22 − x2)
...

...
...

1 (x1n − x1) (x2n − x2)


 ,W =




w11w21 0 . . . 0
0 w12w22 . . . 0
...

...
. . .

...
0 . . . . . . w1nw2n


 ,

w1i = w(x1i − x1, h1) and w2i = w(x2i − x2, h2). One must now select two bandwidths
here, one for each of the two covariates.

It is also possible to use a more general weighting function instead of the product of two
individual weighting functions used above. Secondly it is also possible to use different
kernels for each covariate, e.g. a rectangular kernel for x1 and a Gaussian for x2. This type
of generalization is rarely used in practice because there is seldom a good reason to do so.
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2.4.1 The fitted values and the residuals

The estimated residuals are useful to assess certain aspects of the fit of the model, e.g. to
check for heteroscedasticity, and to model their distribution for the purpose of computing
confidence intervals for m(x), and for predictions based on the model. To compute the
residuals we need the “fitted values”. We consider again the case in which there is a single
covariate and a local line is fitted.

The residuals, ei, are estimated using

êi = yi − m̂(xi) , i = 1, 2, . . . , n .

Now m̂(xi) = (1 (xi − xi))

(
θ̂1

θ̂2

)
= θ̂1, where θ̂1 changes for each i, i = 1, 2, . . . , n. In

particular, the matrix of weights W changes for each i. Let Wi be the matrix of weights
associated with xi, i.e. Wi is a diagonal matrix with entries w(xj − xi, h), j = 1, 2, . . . , n.

Then θ̂1 is the first row of the matrix X(X ′WiX)−1X ′Wi, say (si1, si2, . . . , sin), multiplied
by y. It follows that

m̂(xi) = (si1, si2, . . . , sin)




y1

y2
...

yn


 and so

m̂ =




m̂(x1)
m̂(x2)

...
m̂(xn)


 =




s11 s12 . . . s1n

s21 s22 . . . s2n
...

...
...

...
sn1 sn2 . . . snn







y1

y2
...

yn


 = Sy

.

Thus the fitted values are simply linear functions of the observed y–values. We say that the
y–values have been linearly filtered. The matrix S is called smoother matrix and is closely
connected to the concept of degrees of freedom of a model, i.e. the equivalent number of
parameters of the model. Among other possibilities one can define the degrees of freedom
of a nonparametric smoother as the trace of the smoother matrix, i.e. df(m̂) = tr(S). For
a more detailed discussion of the concept of degrees of freedom in nonparametric regression
see Chapter 3.

Given the smoother matrix S, the residuals are obtained as follows:

ê = y − m̂ = y − Sy = (I − S)y , where ê = (ê1, ê2, ..., ên)′ .
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2.5 Asymptotic properties of kernel smoothers

We have seen that m̂(x) can be represented as a linear function of the y–values, i.e. in the
form

m̂(x) =
n∑

i=1

vi yi ,

where vi = wi

w.
, wi = w(x− xi, h) and w. =

n∑
i=1

wi. Note that the vi depend on x, and that

n∑
i=1

vi = 1.

We also showed that

Em̂(x) =
n∑

i=1

vim(xi) ,

Var(m̂(x)) =
n∑

i=1

v2
i σ

2 .

We now consider the asymptotic properties of m̂(x), i.e. its properties as the sample size
n increases indefinitely. These properties will depend on which values of x arise as n
increases. If, for example, the values of x are all taken to be equal to some constant, c,
then the performance of m̂(x) will only improve for x = c (and perhaps for x “near” c)
as n becomes large. It will not improve for x–values which are “far away” from c. On
the other hand if the x–values are assumed to be spread uniformly over an interval (a, b)
as n increases then the performance of m̂(x) is expected to improve for all x ∈ (a, b). In
what follows we will suppose that the x–values will be generated independently according
to some density function f(x).

For the local linear case it can be shown (see e.g. Ruppert and Wand (1994)) that, as n
becomes large, one has

E (m̂(x)) ≈ m(x) +
h2

2
k2m

′′(x) , (2.4)

Bias (m̂(x)) ≈ h2

2
k2m

′′(x), (2.5)

Var (m̂(x)) ≈ σ2

nh2
j2

1

f(x)
, (2.6)

where k2 =
∫

z2K(z)dz, j2 =
∫

K2(z)dz. K(z) is the kernel, i.e. w(t, h) = 1
h

K
(

t
h

)
.

The above expressions are important because they indicate how each component of the
estimator affects the bias and the variance of the estimator.
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The asymptotic bias depends on

— the bandwidth; it increases with increasing h,

— the variance of the kernel, k2,

— the curvature of m at the point x, m′′(x); the bias is small if m(x) is a straight line
near the point x.

We are free to choose the bandwidth and the kernel but not m′′(x), because that is a
property of the unknown function, m, that we are attempting to estimate.

The asymptotic variance depends on

— the residual variance, σ2,

— the bandwidth; it decreases with increasing h,

— the sample size; increasing n reduces the variance,

— j2, a property of the kernel,

— the pdf f(x); Var (m̂(x)) is smallest where f(x) has a maximum, i.e. where the most
x–values are available.

For a given sample size, n, we are free to select h and the kernel. Given that one uses a
“reasonable” kernel, the most important issue is that of determining a suitable value of h.
Note that by decreasing h we reduce the bias but increase the variance.

The asymptotic mean squared error, given by

MSE(m̂(x)) =
h4

4
k2

2(m
′′(x))2 +

σ2

nh
j2

1

f(x)
, (2.7)

provides a measure that takes both the bias and the variance into account.

Ideally we would wish to select the bandwidth that minimizes the MSE. In fact one can
derive an expression for the optimal bandwidth (see Assignment 5) but the expression
depends on a number of unknown factors — the curvature of m(x), the residual variance
and f(x). One would need to estimate these components to estimate the optimal value
of h. This is not easy although so-called “plug-in” estimators have been developed to
do this (see for example Bowman and Azzalini (1997), Section 4.5.). We will consider
an alternative method of estimating the optimal bandwidth, as described in the following
section.
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2.6 Cross-Validation

When fitting a model yi = m(xi) + ei to given data (x1,y1), . . ., (xn,yn) one is interested
in assesing the accuracy of the resulting fit m̂(x). Assume that (after fitting our model)
we somehow obtain additional observations (x∗1,y

∗
1), . . ., (x∗m,y∗m). These new observations

could be used to assess the fit. One could, for example, compute the residual sum of
squares (RSS) for the new observations:

RSS =
m∑

i=1

(y∗i − m̂(x∗i ))
2 (2.8)

One way of obtaining “fresh observations” with which to asses the fit is to split the original
sample with n observations into two subsamples: One subsample of size n− k, called the
calibration sample, is used to estimate m̂. The other sample of size k, called the validation
sample, is used for assessing the fit.

In practice it is not the MSE but the prediction squared error (PSE) that is used to assess
the fit of m̂:

PSE = E(y − m̂(x))2 (2.9)

However, the value for h which minimizes the PSE also minimizes the MSE:

PSE = E(y − m̂(x))2 = E(y −m(x) + m(x)− m̂(x))2

= E(y −m(x))2

︸ ︷︷ ︸
=σ2

+ E(m(x)− m̂(x))2

︸ ︷︷ ︸
=MSE(m̂(x))

+ 2E

independence︷ ︸︸ ︷
(y −m(x))︸ ︷︷ ︸

=0

(m(x)− m̂(x))

= σ2 + MSE(m̂(x))

The third term above is equal to zero because the random variables y−m(x) and m(x)−
m̂(x) are independent, and E(y−m(x)) = 0. The indepence follows from the fact that m̂(x)
is computed using the calibration sample, whereas y is from the (independent) validation
sample. The PSE can be estimated for different values of h by using cross–validation.

A clever idea in this context (generally attributed to John Tukey) is the one–item–out
cross–validation. In this case k (the size of the validation sample) equals one.

Then, the cross–validation criterion (CV) used for assesing the accuracy is defined as:

CV =
1

n

n∑
i=1

ê∗2i =
1

n

n∑
i=1

(yi − m̂−i(xi))
2

where m̂−i denotes the estimator of m based on the original sample with one observation
omitted, namely the observation (xi,yi). Assuming that MSE(m̂(x)) ≈ MSE(m̂−i(x)) one
has that
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E(CV ) =
1

n

n∑
i=1

E(CVi) ,

E(CVi) = E(yi − m̂−i(xi))
2 = E(yi −m(xi) + m(xi)− m̂−i(xi))

2

= E(yi −m(xi))
2

︸ ︷︷ ︸
=σ2

+ E(m(xi)− m̂−i(xi))
2

︸ ︷︷ ︸
≈MSE(m̂(xi))

+ E(yi −m(xi))(m(xi)− m̂−i(xi))︸ ︷︷ ︸
=0 (as above)

,

E(CVi) ≈ σ2 + MSE(m̂(xi)) ,

E(CV ) ≈ σ2 +
1

n

n∑
i=1

MSE(m̂(xi)) =
1

n

n∑
i=1

PSE(m̂(xi)) (2.10)

Thus E(CV ) is approximately equal to the average PSE, where the average is taken over
the observed values x1, x2, ..., xn. The cross–validation criterion, CV, is an (approximately)
unbiased estimator of this average. The optimal bandwidth is estimated using that value
of h that minimizes CV. The R library “sm” offers the function “hcv” to carry out the
optimization, which is computationally demanding when the sample size is large.

Figure 2.7 displays a plot of the CV criterion for samples of different sizes. The samples
for the middle and right-hand panels were obtained by removing observations from the
sample in the left-hand panel. In each case the bandwidth that led to the smallest CV was
used to compute the estimates m̂(x) that are displayed in the bottom three panels. Notice
that, as n decreases, so the estimated optimal value of the bandwidth increases.
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Figure 2.7: Cross validation estimates of the optimal h and the corresponding m̂(x) for different

sample sizes.
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2.7 Kernels with Variable Bandwidth

Figure 2.7 illustrates the point that the optimal value of h depends on the sample size.
Other things being equal, the larger n the smaller the optimal value of h. Taking this
idea one step further, it makes sense to use different bandwidths for different values of x,
depending on how much sample information is available “near” x. Figure 2.8 illustrates
this point.
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Figure 2.8: Cross validation-based estimates for different intervals.

The bottom left panel shows a sample of observations and m̂(x) using h = 0.48, the value
that minimized the CV criterion (top left panel). This sample was constructed to have
fewer observations in the interval 0 ≤ x < 3.5 than in the interval 3.5 ≤ x ≤ 10. If we
restrict our attention to the observations in the interval 0 ≤ x < 3.5 (bottom middle panel)
then the optimal bandwidth is h = 0.61 whereas for the interval 3.5 ≤ x ≤ 10 (bottom
right panel) it is h = 0.41. Thus the value h = 0.48 that we obtain for the entire interval
is “too small” for the sparsely sampled region on the left, and “too large” for the densely
sampled region on the right.

It is a compromise that arises because we are using a single bandwidth for the entire curve.

The explanation for the behaviour of the estimated optimal bandwidth in Figure 2.8 is
that the sample size n directly affects the variance of m̂(x) and thus also the mean squared
error. The higher the sample size, the smaller the variance and its impact on the MSE
for a given bandwidth h. This leads to a smaller optimal bandwidth. Generally speaking,
a large n leads to a smaller optimal bandwidth. Similarly, the optimal local bandwidth
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depends on the “local sample size”, that is the number of points near the x at which we
are estimating m(x).

The above discussion is intended to motivate the option of using different bandwidths for
different parts of the curve, in other words to use variable bandwidth techniques. One of
the most popular of those techniques is “loess” that is implemented by the R function
with the same name (see help(loess) for implementation details). This method is based
on the bandwidth of the form

h(x) ∝ dk(x), (2.11)

where dk(x) represents the distance to the k–th nearest observed x–value.

Thus dk(x) is a measure of the density of points “near” x; if dk(x) is very small then there
are (at least) k points near x, but if dk(x) is large the k-th nearest point is “far away” from
x. In the former case we would wish to use a small bandwidth and in the latter case a large
bandwidth. The choice of k determines what we regard as “near” or “far”. In practice on
specifies the “span”, f = k

n
, rather than k, i.e. the fraction of the sample size that is to be

used to fit a local regression. The tricube kernel is often used to construct the weighting
function:

K(z) =

{
(1− |z|3)3 for |z| < 1

0 otherwise

Figure 2.9 displays some variable-bandwidth estimates based on different spans, f . Also
shown is the fixed-bandwidth estimate based on the CV-optimal bandwidth. Comparing
the left two panels one can see that the two estimates are very similar for x ≥ 3.5, but
that the variable-bandwidth estimate is a little smoother for x < 3.5, the interval in which
there are fewer observations.
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Figure 2.9: Fixed– and variable–bandwidth estimators.


