
Chapter 3

Splines

3.1 Introduction

Consider again the regression model

yi = m(xi) + ei , i = 1, 2, ..., n,

where the ei are assumed to be independently and identically distributed with E(ei) = 0
and Var(ei) = σ2. As before we wish to estimate the function m(x), the conditional
expectation of the response variable, y, when the covariate takes on the value x. For
convenience we will assume that the observations have been reordered so that x1 ≤ x2 ≤
· · · ≤ xn. In the previous chapter we have considered two general approaches to the problem
of estimating m, namely parametric modelling and kernel regression. The latter, being local
in nature, is more flexible than parametric-based methods. In this chapter we consider
another flexible approach to estimate m, based on splines.

The term spline comes from the ship building domain. It is the name used for a flexible
strip of wood that is used to draw smooth curves through a set of points on a section
of the ship. In that context the curves pass through all the points and are referred to
as “interpolating splines”. In our context we will not require the curves to pass through
all the points. Instead we wish to use splines to provide a smooth curve that describes
the general shape of the relationship between x and y. In the following, we will consider
regression splines and smoothing splines.

3.2 Regression Splines

The idea here is to partition the range of the covariate into intervals and to fit a polynomial
to the data in each interval. In what follows we restrict our attention to the case of cubic
functions, which turn out to have desirable properties.
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One begins by defining a convenient interval [a, b] that contains all the x–values and then
defines K values, called knots, a < ξ1 < ξ2 < ... < ξK < b which specify the boundaries of
the partition of [a, b]. For convenience we also define ξ0 = a and ξK+1 = b, which are called
the exterior knots. We can now fit a polynomial to the observations in each of the K + 1
intervals (ξk, ξk+1], k = 0, 1, .., K. A cubic polynomial is determined by 4 parameters, and
so the estimator, m̂, depends on 4(K + 1) parameters.

Panel 1 at the top left in Figure 3.1 illustrates the case with K = 2 knots. In its uncon-
strained form this model has 3 × 4 = 12 parameters.

knot knot

(1) m(x) discontinuous at the knots

knot knot

(2) m(x) continuous at the knots

knot knot

(3) m’(x) continuous at the knots

knot knot

(4) m’’(x) continuous at the knots

Figure 3.1: Regression splines with increasing degrees of continuity.

The resulting curve is not continuous. In most applications we wish to assume that m
is continuous. We can ensure that m̂ is continuous by imposing K restrictions on the
polynomials, namely that they meet at the interior knots, ξ1, ξ2, . . . , ξK . These restrictions
reduce the number of free parameters by K. Panel 2 of the figure shows the resulting
smooth, which illustrates that continuity alone does not guarantee that the resulting curve,
m̂, looks smooth. To make it smoother we can impose K further restrictions on the
polynomials, namely that the derivatives at the interior knots should be equal. This
improves the appearance of the estimate, but it still doesn’t look entirely smooth (see
Panel 3). This can be improved by requiring that the second derivatives at the interior
knots should also be equal. This results in K further restrictions and so the number of free
parameters has been reduced to 4(K + 1) − 3K = K + 4. The resulting curve is called a
cubic spline and has the following properties:

– it is a cubic polynomial on each interval (ξk, ξk+1], k = 0, 1, .., K,
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– it is smooth in the sense that m(x), m′(x) and m′′(x) are continuous on (a, b],

– m′′′(x) is piecewise constant.

One can further reduce the number of parameters to K + 2 by imposing the additional
restrictions that m̂ is a straight line for x ≤ ξ0 and for x > ξK+1, i.e. m′′(ξ0) = 0 and
m′′(ξK+1) = 0. The result is known as a natural cubic spline.

3.2.1 Details for the case K = 1

We illustrate the above ideas for the case in which there is a single knot ξ. For convenience
we assume that ξ = 0.

In its unconstrained form the model has 4(K + 1) = 8 parameters and the conditional
expectation is of the form:

m(x) =

{
A(x) = α0 + α1x + α2x

2 + α3x
3 for x ≤ 0,

B(x) = β0 + β1x + β2x
2 + β3x

3 for x > 0.

The continuity conditions impose restrictions on the 8 parameters:

continuity of m(x) at ξ = 0 =⇒ A(0) = B(0) =⇒ α0 = β0,
continuity of m′(x) at ξ = 0 =⇒ A′(0) = B′(0) =⇒ α1 = β1,
continuity of m′′(x) at ξ = 0 =⇒ A′′(0) = B′′(0) =⇒ α2 = β2.

Thus there are only 5 free parameters, namely α0, α1, α2, α3, β3:

m(x) =

{
A(x) = α0 + α1x + α2x

2 + α3x
3 for x ≤ 0,

B(x) = α0 + α1x + α2x
2 + β3x

3 for x > 0.

Writing β3 = α3 + θ one has that

m(x) = α0 + α1x + α2x
2 + α3x

3 + θ(x)3
+, where (x)+ =

{
0 for x ≤ 0,
x for x > 0.

Suppose that the first m x-values are smaller than or equal to zero and the remaining
n−m are greater than zero. Thus the model can be represented as
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This is a linear model and has the form

y = Xη + e , (3.1)

where η represents the vector of parameters. The least squares estimator of η, and the
fitted values, are given by

η̂ = (X ′X)−1X ′y (3.2)

ŷ = X(X ′X)−1X ′y (3.3)

= Sy

The above expression for ŷ shows that the fitted values are linear functions of the obser-
vations, i.e. ŷ is a linear smooth of the y–values.

3.2.2 The general case with K knots

It can be shown that a cubic spline with K knots at ξ1, ξ2, ..., ξK can be represented by the
formula

m(x) = α0 + α1x + α2x
2 + α3x

3 +
K∑

K=1

θk(x− ξk)
3
+ , where z+ =

{
0 if z ≤ 0
z if z > 0

Thus the model can be represented as
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This is also a linear model of the form (3.1), namely a multivariate regression with the
basis P1(x) = 1, P2(x) = x, P3(x) = x2, P4(x) = x3, P5(x) = (x − ξ1)

3
+, . . . , PK+4(x) =

(x−ξK)3
+. The least squares estimator of η is given by (3.2), and the fitted values are given

by (3.3). However, this estimator is numerically unstable because, in many applications,
the matrix (X ′X) is nearly singular. In practice one uses so-called B–bases instead, which
lead to the same fit in theory, but which are more stable numerically. Details of B-bases
and their computations are given, for example, in Chapter 2 of Hastie and Tibshirani
(1990). The R–function bs in the software library splines can be used to fit regression
splines using B–bases.
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3.2.3 Example

Figure 3.2 gives scatterplots of the annual salary of the chief executive officers for 59
small highly ranked firms plotted against the covariate age (source: Forbes, November 8,
1993, ”America’s Best Small Companies”). The panels in the figure display four regression
splines, each based on two knots, which have been placed at different points.
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Figure 3.2: Regression splines with two knots, placed at different points.

The R–library splines was used to create the displays in Figure 3.2.

Note that the fitted regression spline depends on the number of knots and where the knots
are placed. I.e. one has to decide how many knots to use, and where to place them.
In practice the knots are usually placed at appropriate quantiles of the covariate. For
example for K = 3 the knots are placed at the three quartiles of the x–values. Regarding
the number of knots to use one has to balance the bias against the variance of the estimator.
The number of knots, K, determines the number of parameters and thus plays a similar
role to the degree of the polynomial in polynomial regression, or to the bandwidth in
kernel regression. In general, increasing K leads to a reduction of the bias. That’s because
the increased number of parameters allows for more flexibility of the estimator. However,
increasing K also increases the variance.
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3.3 Smoothing Splines

Our objective is to estimate m by means of a function that (a) fits the data well, and (b)
is as smooth as possible. A measure of smoothness of m is the integral of the square of its
second derivative. The following criterion takes both (a) and (b) into account:

n∑
i=1

(yi −m(xi))
2 + λ

∫ b

a

(m′′(x))2 dx (3.4)

where λ > 0 is a fixed constant and xi ∈ [a, b], i = 1, 2, . . . , n.

The first term is the sum of squares of the residuals; it provides a measure of how well the
function m fits the data. The integral is a measure for the roughness/smoothness of the
function m. Functions which are highly curved will result in a large value of the integral;
straight lines result in the integral being zero. The roughness penalty, λ, controls how much
emphasis one wishes to place on smoothness. By increasing λ one places more emphasis
on smoothness; as λ becomes large the function approaches a straight line. On the other
hand a small value of λ emphasises the fit of m to the data points; as λ approaches zero
m approaches a function that interpolates the data points. A remarkable result is that the
criterion (3.4) can be minimized analytically:

Result: Among all functions with two continuous derivatives, there is a unique
function that minimizes criterion (3.4); it is a natural cubic spline with knots
at the unique values of x.

If all the values of the covariate are different, then the natural cubic spline has as many
knots as there are observations, i.e. K = n. That means that the function that minimizes
criterion (3.4) would seem to be overparameterized. In fact this is not the case because the
parameters are highly dependent, thereby rendering the “effective number of parameters”
much smaller than n. This is a consequence of the smoothing requirement which is imposed
by using λ > 0.

3.3.1 Degrees of freedom

The smoothing parameter, λ, determines the degree of smoothing. It plays a similar role
as did the bandwidth in the case of kernel regression. In general, selecting a small value of
λ leads to a small bias but to a large variance. On the other hand, increasing λ increases
the bias but reduces the variance. The value of λ that is estimated to minimize the mean
squared error can be estimated using the method of cross-validation (we will return to
this in the next sub-section). Although λ is the controlling parameter, its value is not
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easy to interpret. An easier (equivalent) quantity to interpret is the number of “degrees of
freedom”.

The concept of “degrees of freedom” is straight–forward in the context of parametric linear
models. Thus, for example, if we fit a simple linear regression model

yi = α0 + α1xi + ei , i = 1, 2, ..., n ,

using the method of least squares, then the estimated residuals

êi = yi − (α̂0 + α̂1xi) , i = 1, 2, ..., n ,

can be described as points in a (n − 2) dimensional space, they have (n − 2) degrees of
freedom. In general if we fit a parametric model with p free parameters then the estimated
residuals have n− p degrees of freedom; the model “uses up” p degrees of freedom.

In the context of non–parametric models the notion of degrees of freedom has to be gen-
eralized because one does not have a well–defined fixed number of parameters as one does
in the parametric case. A number of such generalizations have been proposed. We will
restrict our attention to the following that is applicable to linear smoothers, i.e. smoothers
for which the fitted values are of the form ŷ = Sy, where S is a given n× n matrix.

The degrees of freedom of a linear smoother is the trace of S,tr(S).

This definition is consistent with the familiar definition for degrees of freedom for a para-
metric model, y = Xβ + e. To see this first note that the matrix S of a paramteric model
is given by X(X ′X)−1X ′, and it holds that tr(S) = rank(X). We assume that there are
more observations than there are parameters (i.e. that p < n), and that the covariates
are linearly independent (i.e. that it is not possible to compute all the values of a given
covariate as a linear combination of the others). Then rank(X) = p, and so the definiton of
the degrees of freedom associated with the model is given by df = tr(S) = rank(X) = p,
i.e. the number of parameters in the model; the estimated residuals have n− p degrees of
freedom.

In the case of spline smoothing it is more convenient to specify the degrees of freedom than
it is to specify λ. That’s because λ depends on the units that are used to quantify the
data. Secondly, by specifying the degrees of freedom we can compare the resulting smooth
with parametric regressions having the same degrees of freedom. The degrees of freedom
determine λ, and vice versa.

3.3.2 Example

We illustrate the use of smoothing splines using the data set cars that is provided in R
(for details key in help(cars)). Given are the speed of cars and the distances taken to
stop. Figures 3.3 and 3.4 contrast parametric regression and smoothing splines for the car
data with comparable degrees of freedom.
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Car data: polynomial regression fits

Figure 3.3: Polynomial regression of different orders.
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Car data: natural smoothing cubic spline fits

Figure 3.4: Smoothing splines with different degrees of freedom.

Figure 3.3 was created using the standard commands for parametric regression provided
by R, and 3.4 was obtained applying the bs–command contained in the splines–library.
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3.4 Cross–validation for linear smoothers

The method of cross-validation, discussed in Chapter 2, is applicable for determining the
value of λ (or equivalently the degrees of freedom) that is estimated to minimize the inte-
grated prediction squared error. One minimizes the one-item-out cross-validation criterion
with respect to λ:

CV (λ) =
1

n

n∑
i=1

(
yi − m̂

(−i)
λ (xi)

)2

where m̂
(−i)
λ represents the estimator of m using the original sample but with the i-th

observation left out.

Thus to compute CV (λ) it would seem that one needs to fit the model n times for each
value of λ. In fact it is not necessary to do so for linear smoothers, it is only necessary to
fit the model once for each value of λ. Recall that for linear smoothers, which include cubic
smoothing splines, the fitted values are of the form ŷ = Sy, where S is an n× n matrix of
weights whose rows sum to one. It can be shown (see, e.g., Hastie and Tibshirani (1990),
Section 3.4.3) that

CV (λ) =
1

n

n∑
i=1

(
yi − m̂λ(xi)

1− Sii

)2

where Sii is the i-th diagonal element of the matix S. Thus once S has been computed
for a given λ it is easy to compute CV (λ). Of course this presupposes that an efficient
algorithm exists to compute S. Such an algorithm does indeed exist for smoothing splines.


