Kernel Regression

I.
Exposition

Regression attempts to find the conditional mean of Y on X, E[Y|X], for a given set of observations.  Our work thus far has focused on least squares regression, as modeled below,
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where 

( is the common influence of all variables on the mean of Yi, 

(i is a coefficient which represents the influence of a variable Xi on Yi, and

(I is an error term, denoting the (
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), the difference between the observed value of Yi and the conditional mean of Y on Xi, 

By minimizing the sum of squared errors, this regression provides us with an equation, linear in its parameters ( and (i that describes the relationship between the independent variable(s) and the dependent variable.  

The above equation asks the experimenter to specify the functional form of the relationship between the X and Y.  This branch of econometrics where the relationship between X and Y is expressed in a functional form with parameters is referred to as parametric statistics.    

In practice, specifying the functional form can be an arduous task.  First, the relationship between X and Y may not captured through a linear relationship.  Second, X may act on Y through a third-party which is not adequately described or predicted by the theory being tested.   

A large body of work has been developed by statisticians and econometricians which attempts to get around some of the shortcomings in parametric statistics by using other means to express the relationship between X and Y.  This area of study is known as (surprise!) nonparametric statistics.  Some well known examples are neural networks and quintile regression.  

The following notes focus on the nonparametric techniques of kernel regression.  

II.
Kernel Regression – Introduction

To get around the problem of functional form, it is possible to construct a density estimator for Y given X.  This density estimate allows us to estimate the conditional expectation of Y on X.

We know that the conditional expectation of Y on X is 
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Thus, our regression equation
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can be rewritten as
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The conditional expectation of Y on X, E(Yi|X = xi), is also referred to as the conditional moment, m(xi).  In the linear least squares case,
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Using the notation for the conditional moment, our regression equation becomes
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In nonparametric statistics, instead of estimating m(xi) with parameters that describe a linear relationship, we use a kernel density function to estimate the conditional moment at an x*.  This approach was developed by Rosenblatt and Parzen as a way of creating an estimator that was more smooth than previous methods of nonparametric density estimation.  They asserted that the function must satisfy the following:
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where   
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and        h     is equal to the bandwidth or window width.

 The kernel density function allows us to construct a value of 
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 using the xi’s close to x* by assigning weights to each of the yi’s associated with a set xi’s located within a specific range from x* and creating an average over these values of yi.  This average give us 
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, the estimated value of the conditional moment at x*.  In the case where the uniform kernel density function is used (i.e., where each observation in the range is equally weighted with a value of 1), the conditional moment is 
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A simple way of understanding this approach is to return to a histogram.  A histogram allows us to see the density function, f(x), of a data set by organizing the data into groups that provide a rough estimate of the occurrences in the population of that group.  
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The plateaus represent only the information within the range of data being described.  The nonparametric estimation of the conditional moment attempts to do something similar.  By using only the information inside a bounded range, it constructs an estimate of the conditional moment at an x*.  Points at or outside the boundary are given a value of 0 while points within the boundary are given weights which are used in constructing the estimate.  Values in which the xis that are far from x are given low weights while those closer to x have more influence in determining the nonparametric estimate of Y.  
We can derive a more formal understanding the conditional moment estimator by returning to basic probability theory.  

The definition of the conditional mean, m(x), is 
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where 





f1(x) is the marginal density of X at x.

Nadaraya and Watson (1964) proposed that m be estimated by replacing f(y,x) by 
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is the kernel density estimator and 
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is the first derivative of the kernel density estimator with respect to X.  (Note: Nadaraya-Watson restricted the kernels used to be symmetric kernels.) 

Using these functions into a multivariate context, we get
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where 
p = q + 1 
and 
h = bandwidth

After some transformations, we get


[image: image22.wmf]å

å

=

=

÷

ø

ö

ç

è

æ

-

÷

ø

ö

ç

è

æ

-

=

n

i

i

i

n

i

i

h

x

x

K

Y

h

x

x

K

m

1

1


This m(.) is known as the Nadaraya-Watson estimator of the conditional moment.  We can see that this estimator has a similar form to the earlier example of conditional moment constructed using the a uniform kernel density function.  It turns out that the example of the Uniform Kernel Density is a special case of the Nadaraya-Watson estimator.  
We now turn to a discussion of some of the properties of the kernel estimator

III.
Finite Sample Properties of the Kernel Estimator

i)
Theoretical Derivation 

Let 
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 represent a continuous density function of a random variable X at a given point xi, for all i = 1,….,n.  Then, using the Rosenblatt-Parzen form, we can write the kernel density estimator in the univariate case
 as
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where 
K is the kernel function



h is the bandwidth



wni(x) is the weight function

The weight function, wni(x), depends on the distance of xi from x and the size of the sample contained in the bandwidth h.  

In order to determine the bias and variance of the estimator
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, we must make several assumptions regarding the kernel function

Assumptions:

(1) The xi’s are i.i.d.
[This assumption will change later.]

(2) K is a symmetric function around zero with the following properties.

a. 
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(3)
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 exists, is continuous, and is bounded in a neighborhood around x.  [Required to evaluate the bias and variance of 
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(4) h = hn ( 0 as n ((.

(5) nhn (( as n (( .

Assumptions 4 and 5 will be important when we discuss the asymptotic properties of the kernel estimator.  

ii)
The bias of 
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From assumption 1, since the xi’s are i.i.d., we can say the same about the wi’s.  Hence,
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With this information, we derive the bias and variance of 
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We substitute back into previous eq.


[image: image40.wmf]f

E

h

x

x

K

E

h

-

ú

û

ù

ê

ë

é

÷

ø

ö

ç

è

æ

-

=

-

1

1






[image: image41.wmf] then 

,

  

since

and

)

(

1

1

1

1

1

1

1

1

-x)

(x

h

dx

x

f

h

x

x

K

h

h

x

x

K

E

h

-

=

÷

ø

ö

ç

è

æ

-

=

ú

û

ù

ê

ë

é

÷

ø

ö

ç

è

æ

-

ò

-

-

y


 


[image: image42.wmf](

)

[

]

y

y

y

y

d

x

f

d

x

h

f

K

f

)

(

)

(

Bias

-

+

=

ò

Ù


Likewise, 

iii)
Variance of the estimator 
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A quick eyeballing of the equations show that the bias is dependent on the bandwidth, h, the kernel K, and the shape of the density while the variance is affected by all these factors and the sample size.  

iv)
Approximations to the Bias and Variance
We must first digress.

Returning to the approximations of bias and variance, if we employ a Taylor series expansion of the density function, then the bias and variance of the kernel estimator is
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up to O(h2)

where 
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v) 
Choosing h and K

In choosing h and K we attempt to minimize the squared error.  Ideally, we would like to minimize the mean integrated squared error.  
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However, the expression for the MISE can be very hard to find.  A good approximation for the MISE is the average mean integrated square error, AMISE.  
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As we can see, minimizing AMISE requires a tradeoff between the bias and variance.  We should note that the results derived thus far are based on O(h4).  Higher orders of h will produce a different optimal h.  

If we take the AMISE, differentiate it with respect to h and set it equal to zero, we get an FOC where 
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This relationship gives optimal selection rule for choosing h.

The choice of an optimal K follows a similar process.

We take our value for h that we derived from the optimal selection rule and plug it into our AMISE.  We then get the following
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If we rescale the K function by 
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, then minimize the MISE with respect to K is the same as a minimization of 
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Setting up the Lagrange 
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and applying the calculus of variations, we get
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The FOCs are
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Since the kernel is symmetric, at ( = ((-(1/(2)1/2 the kernel has a zero.  If -(1 and (2 are determine optimally through the FOCS above, then at the kernel function’s zero, 
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Solving for (1 and (2, we restate the optimal kernel as
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or put otherwise,
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This kernel is very well known and is generally known as the Epanechnikov kernel.  Studies have shown that the difference between values of MISE attained by other kernels and the optimal kernel is quite small.   

Below are five kernel functions, including the Epanechnikov kernel.  For each kernel, K = 0 for |(| > 1.   For |(| < 1, the kernel is equal to the formula below.

(1) Uniform: K(() = 1.

(2) Triangle: K(()  = 1 - |(|.

(3) Epanechnikov: K(()  = (1 - |(|2).

(4) Quartic: K(() = (1 - |(|2)2.

(5) Triweight: K(() =  (1 - |(|2)3.

As a result, we now know that the bandwidth is the most important choice to be made when using this technique.  Furthermore, the approximations we use to determine AMISE are strong so long as the density being measured is not a mixture of normal and skewed densities.  In those situations, the approximated h may seriously underestimate the exact optimal h.

IV.
Asymptotic Properties of the Kernel Density Estimator (in the case of independent observations)
We keep assumptions 1, 4, and 5 from before replace assumptions 2 and 3 with the following new assumptions:

Assumptions:

(6) K is the class of all Borel
 measurable bounded real-valued functions K(() such that 
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(7)
f(x) is continuous at any point x0 and 
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In addition, we make use of the following lemma on bounded convergence:

(under assumptions 1, 4, 5, 6 and 7)
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i)
Asymptotic Unbiasedness
Theorem 4.1:
With assumptions 1, 4, 6, and 7
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ii)
Consistency
Theorem 4.2:
With assumptions 1, 4, 5, 6, and 7
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Asymptotic Variance of 
[image: image79.wmf]^

f



[image: image80.wmf]ò

-

=

    

)

(x)

)

(

AV

2

1

 d

ψ

(

ψ

K

f

nh


Weak Consistency

Theorem 4.3:
Assuming Theorem 4.2 is sustained, then 
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Strong Consistency

For strong consistency, we need to make an additional assumption:

Assumption


(8)
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which requires the following sufficient condition
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Theorem 4.4:
Assuming Theorem 4.3 is sustained, then 
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is strongly consistent so long as Assumption 8 holds.  

Proof:

Add and subtract 
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Applying Bennett’s inequality
 produces
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Thus for every ( > 0,
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if Assumption 8 is true.  Since 
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is asymptotically unbiased, then as n((, 
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Uniform Consistency

Finally, we show that 
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f

is uniformly consistent.

We need 3 more assumptions in order for 
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to be uniformly consistent:

Assumptions:

(9)  
The characteristic function of K is absolutely integrable.

(10) 
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is uniformly continuous in R1.

(11) nh2 (( as  n((
Theorem 4.5:
Assuming Theorem 4.1 is sustained as well as the above assumptions, then  
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is uniformly weak consistent,
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iii)
Asymptotic Normality
(Under assumptions 1,3,4,5,6, and 7) 
If we believe that the following holds
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then we can say that, in an asymptotic sense,
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If we wanted to write a confidence interval for f, we can write it as the following
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When doing practical work, 
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can be replaced with estimators.  The intergral of the kernel function squared can be found in an analytic manner for certain kernels.  For the Gaussian or Normal Kernel, its value is 0.2821.
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� The multivariate representation of the kernel density estimator is 


� EMBED Equation.3  ���





where zi is the ith sample observation (yi,xi) and z = (y,x) is a fixed point.  





� Small o and Large O





Sometimes we need a measure of the order of magnitude of a particular sequence, for example, {Xn}.  The magnitude of the sequence is determined by examining its behavior for large values of n.  





Definition 1:  {Xn} is said to be of order nk if � EMBED Equation.3  ��� as n ( ( for a constant a > 0.  This property is represented by the following –  Xn = O(nk).  This holds true is {Xn} is a sequence of randome variables and the constant a is nonstochastic.  





Definition 2: 	{Xn} is of smaller order than nk if  � EMBED Equation.3  ��� as n ( ( .  This property is represented by the following –  Xn = o(nk).  





For either situation, k can take any real value.  An example to illustrate:





Consider {Xn} = � EMBED Equation.3  ���	





For k = -1,	� EMBED Equation.3  ��� 	as n ( (.  Thus, Xn = O(n-1) = O(1/n).  





The sequence {Xn} = � EMBED Equation.3  ���is also of the sequence o(1) = o(n0).  If k = 0, then � EMBED Equation.3  ��� as n ( (.  








� Borel Measurable Funtions:


A sigma-algebra F is then a (-algebra F is a nonempty collection of subsets of X, which is the superset, such that the following hold: 


1. The empty set is in F. 


2. If A is in F, then so is the complement of A. 


3. If  is a sequence of elements of F, then the union of the s is in F. 


The Borel sigma-algebra, which is related to the topology of a set, is generated by the open sets (or equivalently, by the closed sets).  If F is the Borel sigma-algebra on some topological space, then a measure is said to be a Borel measure (or Borel probability measure). For a Borel measure, all continuous functions are measurable.  








� Bennett’s inequality:	If {Xi} are independent, and |Xi-µi| < b for all i, then for ( > 0


� EMBED Equation.3  ���
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