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I. SVAR Model for Stationary Data

1. General notion

Consider the simple model of simultaneous equations:
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where
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(2)

The sample consists of observations from t = 1, . . . ,T with a fixed initial value y0= (y10, y20).

The model (1) is called a structural VAR (SVAR). It is derived by some underlying economic theory. The exogenous error terms 
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 are independent and are interpreted as structural innovations. 

Example: let y1t denote the log of real GDP and y2t denote the log of nominal money supply. Then realizations of 
[image: image6.wmf]t

1

e

 are interpreted as capturing unexpected shocks to output that are uncorrelated with 
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, the unexpected shocks to the money supply.

In (1), the endogeneity of y1t and y2t is determined by the values of b12 and b21.
In matrix form, the model (1) becomes:
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or
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, where D is a diagonal matrix of elements 
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The reduced form of the SVAR, a standard VAR model, is found by multiplying (3) by 
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(4)

or 
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Given that 
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we have:
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The reduced form errors ut are linear combinations of the structural errors εt and have covariance matrix
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that is diagonal only if b12 = b21 = 0.
2.Stationarity Conditions

The reduced form VAR (4) is covariance stationary provided the eigenvalues of A1 have modulus less than 1. The eigenvalues of A1 satisfy the equation 

det (I2λ-A1) = 0

and are equal to the inverses of the roots to the characteristic equation 

det(I2-A1z) = 0.



(5)

Hence, the reduced form VAR is stationary provided the roots of (5) lie outside the complex unit circle. 
3. MA Representations

The moving average (MA) or Wold representation of the reduced form VAR (4) is found by multiplying both sides of (4) by 
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where 
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In the Wold representation for yt, the first matrix in the moving average polynomial Ψ(L) is Ψ0 = I2. In addition, the error terms ut are generally contemporaneously correlated and have covariance matrix Ω. Note: if we have a stable VAR with no intercept, VMA can be written:
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The structural moving average (SMA) representation of yt is based on an infinite moving average of the structural innovations εt. Substituting ut= 
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where
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Notice that 
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Example: 
For the bivariate system SMA representation is:
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which illustrates that the elements of the Θk matrices, θ(k)ij , give the dynamic multipliers or impulse responses of y1t and y2t to changes in ε1t and ε2t.
4. Impulse Response Functions

Consider the SMA representation (7) at time t + s
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The structural dynamic multipliers are
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(8)
The structural impulse response functions (IRFs) are the plots of θ(s)ij vs. s for i, j =1, 2. These plots summarize how unit impulses of the structural shocks at time t impact the level of y at time t + s for different values of s.
Since yt is assumed to be covariance stationary we know that 
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for i, j=1, 2

so that no structural shock has a long-run impact on the level of y. The long-run cumulative impact of the structural shocks is captured by the long-run impact matrix
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and 
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In order to compute the structural IRFs, the parameters of the SMA representation (7) need to be estimated. Since 
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the estimation of the elements in Θ(L) can often be broken down into two steps. First, A1 is estimated from the reduced form VAR (4). Given
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5. Forecast Error Variance Decomposition

The idea behind constructing forecast error variance decompositions is to determine the proportion of the variability of the errors in forecasting y1 and y2 at time t + s based on information available at time t that is due to variability in the structural shocks ε1 and ε2 between times t and t + s. 

To accomplish this decomposition, we start with the Wold representation for yt+s
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The best linear forecast of yt+s based on information available at time t is 
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and the forecast error is
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Next, using εt= 
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 we may write the forecast error in terms of the structural

shocks
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The forecast errors equation by equation are given by
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Focusing on the first equation, we have:
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(10)

Since it is assumed that εt ~ i.i.d. (0,D) where D is diagonal, the variance of the forecast error in (10) may be decomposed as
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The proportion of 
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Proportion of 
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Using similar computations, the forecast error variance decompositions for y2t+s are
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6. Determination of Lag Length and Identification Problems

Determination of lag length

The underlying theory and any hypothesized structure indicate to the economist which variable to include in the model and how many lags would be appropriate. The method of determining the appropriate lag length is still an important issue in the literature on unrestricted VAR’s.

There have been several methods proposed to deal with the problem of correctly determining the proper lag length for an unrestricted VAR. In a lag structure of any particular length, lags from any longer period do not add information to the model and have parameters value of zero. Longer lag lengths also increase the number of estimated parameters, reduce degrees of freedom and increase data requirements. Hence, it is important for the investigator to take care in choosing the lag length of the model.

1. Technique used by Sims involves a likelihood ratio between models of different lag lengths. The ratio is of the form:
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where T is a number of observations, C is a correction factor to bring the test statistic closer to its asymptotic distribution, Di is the determinant of the covariance matrix of the residuals from VAR system i.

This statistic has the chi-squared distribution. Sims states that this procedure is somewhat ad hoc in nature and more work must be done in this area.

2. Brandt and Bessler proposed an alternative to Sims method is to determine first the statistic
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where m is the autoregressive order , N is a number of variables, all the rest notations are as in previous method. This statistics is used to determine the lag length of the VAR and is asymptotically distributed chi-squared with 
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 degrees of freedom. Once the lag length is determined, the VAR is reestimated with statistically insignificant lags on the variables deleted from the model.

3. The final method of lag length determination is proposed by Webb. Lag lengths are chosen to minimize the Akaike Information Criterion (AIC): 
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where P is a number of estimated parameters and 
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 is an estimate of the residual variance. This criterion functions similar to the adjusted R squared statistic. As the number of estimated parameters increases, 
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is reduced, as is the first term in parentheses. However, the second term, 2P, increases. Consequently, the inclusion of additional parameters may actually increase the AIC in some instances as a reduction in residual variance is out-weighed by the increase in the number of parameters.

The actual procedure used by Webb is quite complex. Basically, a search procedure is used to avoid comparing pairwise the vast number of possible exclusions on intermediate lag length.

Identification problems

Without some restrictions, the parameters in the SVAR are not identified. That is, given values of the reduced form parameters a0, A1 and Ω, it is not possible to uniquely solve for the structural parameters B, γ0, Г, and D. Clearly, restrictions on the parameters of SVAR is required in order to identify all of the structural parameters. Sims (1986) argued that economic theory is not rich enough to suggest proper identification restrictions on the SVAR.

How to calculate number of restrictions on the structural parameters to identify all of them from the reduced form VAR(p)? Minimum number of restrictions equals the difference between unique parameters of SVAR and that of VAR. This means that at least 
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restrictions on the structural parameters must be imposed to identify all of them.

The best we can do is to estimate the reduced form VAR (4). There is considerable debate about what constitutes appropriate identifying restrictions. Typical identifying restrictions include 

• zero (exclusion) restrictions on the elements of B; e.g., b12 = 0. 

• linear restrictions on the elements of B; e.g., b12 + b21 = 1.


In some applications, identification of the parameters of the SVAR is achieved through restrictions on the parameters of the SMA representation (7). For example, suppose that ε2t  has no contemporaneous impact on y1t. Then θ12(0) = 0 and so Θ0 becomes lower triangular
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Since Θ0 = 
[image: image67.wmf]1
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which implies that b12 = 0. Hence, assuming θ(0)12 = 0 in the SMA representation (7) is equivalent to assuming b12 = 0 in the SVAR representation (1).

Example: 
suppose ε2t has no long-run cumulative impact on y1t. Then θ12(1)=0 and the long-run impact matrix Θ(1) becomes triangular:
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Long-run restriction places restrictions on all coefficients of the SVAR since
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Identification by Recursive Casual Ordering

The triangular identification is the most popular one. It gives the exact identification of 
[image: image71.wmf]2
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restrictions: n(n+1)/2 restrictions on B with diagonal elements equal to unity, and n(n-1)/2 restrictions on diagonal covariance matrix.

Suppose b12 = 0 so that B is lower triangular. That is,
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Thus, 
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This assumption imposes the restriction that the value y2t does not have a contemporaneous effect on y1t. Since b21 is not 0, a priori we allow for the possibility that y1t has a contemporaneous effect on y2t. Further, under this assumption the reduced form

VAR errors ut become
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The restriction b12 = 0 is sufficient to just identify b21 and, hence, just identify B. To establish this result, we show how b21 can be uniquely identified from the elements of the reduced form covariance matrix Ω. Since 
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 and B is lower triangular, we have
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We can solve for b21 via
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where p is a correlation coefficient between u1 and u2.

Estimation procedure

The SMA representation of the SVAR based on a recursive causal ordering may be estimated using the following procedure:
1.Estimate the reduced form VAR by OLS:
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Estimate b12 and B from 
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2. Estimate SMA from estimates of a0, A1, and B:
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Choleski Factorization

The SVAR representation based on a recursive causal ordering may be computed using the Choleski factorization of the reduced form covariance matrix Ω. The Choleski factorization of the positive semi-definite matrix Ω is given by
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P is a lower triangular matrix with 
[image: image84.wmf]0

³

ii

p

, i=1, 2. A closely related factorization obtained from the Choleski factorization is the triangular factorization 
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(11)

where T is a lower triangular matrix with 1’s along the diagonal and Λ is a diagonal matrix with non-negative elements:
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How to perform the triangular factorization (11) on the covariance matrix?

Consider the reduced form VAR:
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Now construct a pseudo SVAR model by premultiplying by 
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Pseudo structural errors εt have a diagonal covariance matrix Λ since
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In the pseudo SVAR 
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so that b12 = 0 and b21= -t21.

The identification of the SVAR using the triangular factorization depends on the ordering of the variables in yt. In the above analysis, it is assumed that yt =(y1t, y 2t)’ so that y1t comes first in the ordering of the variables. When the triangular factorization is conducted and the pseudo SVAR is computed, the structural B matrix has the above indicated form where b12 = 0. If the ordering of the variables is reversed, yt = (y2t, y1t)’, then the recursive causal ordering of the SVAR is reversed and the structural B matrix becomes
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where b21 = 0.

7. Sensitivity Analysis

Since the ordering of the variables in yt determines the recursive causal structure of the SVAR, and since this identification assumption is not testable, a sensitivity analysis is often performed to determine how the structural analysis based on the IRFs and FEVDs are influenced by the assumed causal ordering. This sensitivity analysis is based on estimating the SVAR for different orderings of the variables. If the IRFs and FEVDs change considerably for different orderings of the variables in yt, then it is clear that the assumed recursive causal structure heavily influences the structural inference.

Another way to determine if the assumed causal ordering influences the structural inferences is to look at the residual covariance matrix Ω from the estimated reduced form VAR (4). If this covariance matrix is close to being diagonal then the estimated value of B will be close to diagonal and so the ordering of the variables will not influence the structural inference. 

A formal test of the null hypothesis that Ω is diagonal can be easily computed using the LM statistic (see Greene (2000), p. 601)


[image: image92.wmf])

1

(

2

2

~

ˆ

c

r

T

LM

=


where 
[image: image93.wmf]2

1

12

w

w

w

r

=

 is estimated residual correlation between u1t and u2t. Under the null that Ω is diagonal, LM has an asymptotic chi-square distribution with 1 degree of freedom.

II. Structural VAR Modeling for I(1) Data that is Not Cointegrated

Let yt = (y1t, y2t)’ be I(1) and not cointegrated. That is, y1t and y2t are both I(1) and there is no linear combination of y1t and y2t that is I(0). In this case, Δyt = (Δy1t,Δy2t)’ is I(0) and is assumed to have the SVAR representation
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(14)

where εt ~ i.i.d. (0,D), D is diagonal. The SVAR model for Δyt is of the same form as the SVAR for yt when we assumed yt is I(0).

The reduced form VAR for Δyt is
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where
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In (15), it is assumed that the roots of det(I2  - A1z) = 0 lie outside the complex unit circle.

The Wold MA representation of (15) is
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where 
[image: image101.wmf]1

1

)

1

(

,

)

(

)

(

-

-

=

=

A

μ

A

Ψ

L

L

.
The SMA representation is
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where 
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1. Impulse Response Functions

Consider the SMA representation (17) at time t + s
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The structural dynamic multipliers are
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which give the impact of the structural shocks on the first difference of y at horizon t+s. Often we are more interested in the impact of the structural shocks on the level of y. Using the fact that
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we have
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Hence, the impact of εjt on yit+s is equal to the cumulative impact of εjt on Δyi through horizon s. The long-run impact of a shock to εjt on the level of yi is then
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(19)

For stationary y this long-run impact is always zero but for nonstationary y this impact may or may not be zero for some combination of i and j.

2. Beveridge-Neslson Decomposition

Using the Wold MA representation for Δyt, the multivariate Beveridge-Neslson decomposition of yt is:
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where 
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The BN decomposition gives the multivariate stochastic trends in yt in terms of the reduced form error terms ut 
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the multivariate stochastic trends in yt may also be represented in terms of the structural errors:
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3. Economic Application: Testing Long-Run Neutrality

King and Watson (1997) use bivariate SVAR models to test some simple long-run neutrality propositions in macroeconomics. The key feature of long-run neutrality propositions is that changes in nominal variables have no effect on real economic variables in the long-run. 

Examples of long-run neutrality propositions: 

(1) A permanent change in the nominal money stock has no long-run effect on the level of real output;

(2) A permanent change in the rate of inflation has no long-run effect on unemployment (a vertical Phillips curve); 

(3) A permanent change in the rate of inflation has no long-run effect on real interest rates (the long-run Fisher relationship). 

Focus on testing the proposition that money is neutral in the long-run. Let yt = (y1t, y2t)’ where y1t denotes the natural logarithm of real output and y2t denotes the logarithm of nominal money. King and Watson show that testing long-run neutrality within a SVAR framework requires the data to be I(1). They characterize long-run neutrality of money using the SMA representation for Δyt written as
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where ε1t represents exogenous shocks to output that are uncorrelated with exogenous shocks to nominal money, ε2t, and 
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for i, j = 1, 2.

Long-run neutrality of money involves the answer to the question: does an unexpected and exogenous permanent change in the level of money (y2) lead to a permanent change in the level of output (y1)? If the answer is no, then money is long-run neutral towards output. In terms of the SMA representation, ε2t represents exogenous unexpected changes in money. The permanent effect of ε2t on future values of the level of money is, by (19), θ22(1). Similarly, the permanent effect of ε2t on future values of the level of output is θ 12(1). Since the data are in logs, the long-run elasticity of output with respect to permanent changes in money is


[image: image118.wmf])

1

(

)

1

(

22

12

12

q

q

h

=


Hence, money is neutral in the long run when θ 12(1) = 0, or equivalently, when η12 = 0. That is, money is neutral in the long run when the exogenous shocks that permanently alter money, ε2t, have no permanent effect on output.

The above characterization of long-run neutrality clearly shows why the data need to be I(1) in order to be able to test long-run neutrality. If the data are I(0) then the long-run impacts of shocks to the levels of the series are always zero (see (9) above).

The restriction that money is long-run neutral for output imposes the restriction that the long-run impact matrix Θ(1) is lower triangular. The lower triangularity implies that the multivariate stochastic trend for yt has the form
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Hence, the stochastic trend in y1t, TS1t, only involves shocks to ε1. 

To test the long-run neutrality proposition, the SVAR model for Δyt must be identified and estimated and then the long-run impact coefficients θ12(1) and θ22(1) can be estimated from the derived SMA model. To illustrate, assume that Δyt has the SVAR representation (14). At least one restriction on the parameters of (14) is need for identification. Authors consider the following identifying assumptions:

• the impact elasticity of y1 (output) with respect to y2 (money), b12, is known,

• the impact elasticity of y2 (money) with respect to y1 (output) , b21, is known,

• the long-run elasticity of y1 (output) with respect to y2 (money), η12, is known,

• the long-run elasticity of y2 (money) with respect to y1 (output), η21, is known.

Instead of reporting results based on a single identifying restriction, King and Watson summarize results for a wide range of observationally equivalent estimated models based on the (just) identifying assumptions listed above.

Estimation of SVAR when b12 and b21 are known

Consider the estimating the SVAR (14) under the restriction that b12 is known. Given that b12 is known the SVAR (14) may be rewritten as

[image: image120.wmf]t

t

t

t

t

t

t

t

t

t

y

y

y

b

y

y

y

y

b

y

2

1

2

22

1

1

21

1

21

20

2

1

1

2

12

1

1

11

10

2

12

1

e

g

g

b

e

g

g

g

+

D

+

D

+

D

-

=

D

+

D

+

D

+

=

D

+

D

-

-

-

-


The first equation may be estimated by OLS since only lagged values of Δy1 and Δy2 are on the right-hand-side. However, the second equation cannot be estimated by OLS because Δy1t will be correlated with ε2t unless b12 = 0. If b12 is not 0, the second equation may be estimated by instrumental variables (IV) using the residual from the estimated first equation, 
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, together with Δy1t-1 and Δy2t-1 as instruments. The residual 
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 is a valid instrument because
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Hausman, Newey and Taylor (1987) show that this procedure produces the maximum likelihood estimates of the parameters of the SVAR.
III Structural VARs with Combinations of I(1) and I(0) Data

Consider two observed series y1t and y2t such that y1t is I(1) and y2t is I(0). For example, in the analysis in Blanchard and Quah (1989), y1 is the log of real GDP and y2 is the unemployment rate. Define yt = (Δy1t, y2t)’ so that yt is I(0). Suppose yt has the structural representations
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and reduced form representations
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where
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. Regarding the structural innovations, Blanchard and Quah loosely interpret ε1t as a (permanent) supply shock since it is the innovation to the I(1) real output series y1t and interpret ε2t as a (transitory) demand shock since it is the innovation to the I(0) unemployment series.

The IRFs are given by
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(20)

Since y1t is I(1), the long-run impacts on the level of y1 of shocks to ε1 and ε2 are
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(21)

Since y2t is I(0), the long-run impacts on the level of y2 of shocks to ε1 and ε2 are zero:
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(22)

For y2, θ21 and θ22 represent the cumulative impact of shocks to ε1 and ε2 on the level of y2.

Identifying the SVAR Using Long-Run Restrictions

Blanchard and Quah achieve identification of the SVAR/SMA by assuming that demand shocks (shocks to ε2) have no long-run impact on the level of output or unemployment. They allow supply shocks (shocks to ε1) to have a long-run impact on the level of output but not on the level of unemployment. In terms of the long-run impacts, long-run restriction may be represented as follows. Using (21), the restriction that shocks to ε2 have no long-run impact on the level out y1 implies that
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(23)

The restriction that shocks to ε1 and ε2 have no long-run effect on the level of y2 is just a restatement of the result in (22) which holds because y2 is I(0).

The long-run restriction (23) makes the long-run impact matrix Θ(1) lower triangular
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To see how the lower triangularity of Θ(1) can be used to identify B in the SVAR, consider the long-run covariance matrix of yt defined from the Wold MA representation
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Since 
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and the long-run covariance matrix Λ may be re-expressed as
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In order to identify B, Blanchard and Quah make the additional assumption 
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so that the structural shocks ε1t and ε2t have unit variance. Τhe long-run variance becomes
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Notice that since Θ(1) is lower triangular, the factorization in (27) can be obtained using the Choleski decomposition; that is, Θ(1) can be computed as the lower triangular Choleski factor of Λ. Given that Θ (1) can be computed, B can then be computed
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Estimation in the presence of long run restrictions

The estimation of B and Θ(L) using the BQ identification scheme can be accomplished as the following:

• Estimate the reduced form VAR by OLS equation by equation:
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• Compute a parametric estimate of the long-run covariance matrix:
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• Compute the Choleski factorization of Λ:
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• Define the estimate of Θ(1) as the lower triangular Choleski factor of Λ:
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• Estimate B using
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• Estimate Θk using
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IV A Critique to Structural VARs

Structural VARs have appeal for two different kinds of inquiry. The first potential user is interested in estimating a structural equation. If a model imposes restrictions on the dynamics of the relationship, it seems a good practice to test these restrictions. In order to estimate the dynamic consequences, say, of income on money demand, we take to account that historically, when income goes up, further changes in income and interest rates take place. What time path should be assumed in order to assess the consequences for money demand at time t+s of a change in income at time t? With VAR, we use the time path that would historically be predicted following unanticipated change in income.

A second potential user is interested in summarizing the dynamics of vector yt while imposing as few restrictions as possible. This summary includes calculation of impulse response functions that are interpreted as temporary effect on dependant variables. However, such interpretation implicitly assumes that orthogonalized innovation is the same as the disturbance term in a description of policy. This point has been forcefully argued by Cooley and leRoy, Leamer, Bernanke and Blanchard. 

In practice, the standard errors for dynamic inferences based on VARs often turn out to be disappointingly large. Although a VAR imposes few restrictions on the dynamics, the cost of this generality is that the inferences drawn are not too precise. To gain more precision, it is necessary to impose further restrictions.

It must be also recognized that convincing identifying assumptions are hard to come by. The ordering of variables is arbitrary, and the exclusion restrictions are difficult to defend. Simultaneous equations bias is very pervasive in the social sciences and drawing structural inferences from observed correlation must always proceed with great care. We cannot always expect to find credible identifying assumptions to enable us to identify the casual relations among n variables on which we have data.
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