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1. Introduction

We are sometimes interested in modelling duration, which is the time that elapses between the �be-

ginning�and the �end�of some speci�ed state. The most common example is unemployment duration,

where the �beginning�is the day the individual becomes unemployed and the �end�is when the individual

exits from the state of unemployment - for example because she gets a new job. Other examples are the

duration of wars, duration of marriages, time between �rst and second child, the lifetimes of �rms, the

length of stay in graduate school, time to adoption of new technologies, length of �nancial crises etc etc.

Econometric analysis of duration data is a little �di¤erent�- compared to what we have done so far in

this course - primarily in two ways:

1. We are often interested in characterising the distribution of the duration variable, because this

can often shed light on economic questions (more on this below).

2. Data on durations are often censored, either to the right (common & easy to deal with) or to

the left (not so common, not so easy to deal with) or both (even less common & less easy to deal

with). Right censoring means that we don�t know from the data when a certain duration ended;

left censoring means that we don�t know when it began. Of course we talked about censoring last

week when studying the censored regression model (estimated by tobit).

For now, let�s concentrate on the �rst of these points, namely why we should be concerned with the

distribution of durations, and how we can do it. We thus abstract from censoring for the moment.

Useful references on duration data analysis

� Wooldridge (2002), Chapter 20.

� A more comprehensive - and, at least in parts, more intuitive - exposition is the review by Nicholas

Kiefer (1988), Economic Duration Data and Hazard Functions, Journal of Economic Literature

XXVI: 646-679.
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2. Distributions of durations

� Let T � 0 denote duration, i.e. this is the variable that we are modelling. De�ne the cumulative

distribution function of T as

F (t) = Pr (T � t) :

This simply measures the likelihood that a randomly drawn duration from the population of indi-

viduals in the relevant state is shorter than or equal to length t.

� A closely related function is the survivor function, de�ned as

S (t) = 1� F (t) :

This measures the probability that a randomly drawn duration from the population is longer than

t. We can thus interpret the survivor function as the probability of surviving (in the state) past

time t.

� Another important function in duration data analysis, which is related to both F (t) and S (t) ; is

the hazard function, which measures the instantaneous rate at which individuals exit (i.e. no

longer survive, �die�) from the state at time t, given that they have not exited before time t:

The formal de�nition of the hazard function is

� (t) = lim
h#0

Pr (t � T < t+ hjT � t)
h

:

So if T is, say, the length of unemployment in weeks, then � (20) can be interpreted (approximately

- cf. continuous vs. discrete time) as the probability of getting a job between weeks 20 and 21:

� (20) =
Pr (20 � T < 21jT � 20)

1
:
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Notice that

Pr (t � T < t+ hjT � t) =
Pr (t � T < t+ h)

Pr (T � t)

Pr (t � T < t+ hjT � t) =
F (t+ h)� F (t)

1� F (t) ;

and so, for a small h, we get the instantaneous rate of exiting per unit of time:

� (t) = lim
h#0

F (t+ h)� F (t)
h

1

1� F (t)

� (t) = f (t)
1

1� F (t)

� (t) =
f (t)

S (t)
; (2.1)

i.e. the hazard function is the density of exits at time t divided by the survivor function at time

t. This shows that, as asserted above, the hazard function measures the rate at which individuals

exit from the state at time t, given that they have survived (not exited) until time t: Notice that,

approximately, this is the probability that an individual exits from the state at time t, given that

she has not exited before time t

� When we analyse duration data we are typically interested in two things:

1. How does the hazard rate vary with time?

2. Do variables other than time itself impact on the hazard rate? If so, what are those variables

and how do they impact on the hazard rate?

Let�s discuss these issues in turn.

3. Duration Dependence

Duration dependence means that the hazard � (t) varies with t. there is...

� positive duration dependence if d�(t)dt > 0;

3



� negative duration dependence if d�(t)dt < 0; and

� no duration dependence if d�(t)dt = 0:

� Now consider the hazard of marriage/partnership dissolution - i.e. the divorce rate at time t, given

that the marriage has lasted up until time t. The relevant population is the sub-set of the total

population consisting of married couples. Do we expect this hazard to exhibit duration dependence?

� Suppose the nature of the typical partnership is such that it goes �from strength to strength�, so that

the two indivduals in the relationship become ever more closely linked to each other over time (or

slightly less romantically: you have fewer outside options the longer you remain in a partnership).

This would be an example of negative duration dependence, i.e. the hazard would slope downwards

as t increases. Get over the �rst few di¢ cult (high-risk-of-dissolution) years, and chances are the

marriage will last for a long time.

� Or it could be that the hazard increases with time, perhaps because newly-weds are happier than

couples that have been in a relationship for a long time.

� Or it could be that the hazard of divorce is constant over time - in which case the process exhibits

no duration dependence.

� See Figure 5.1 in appendix for an estimate of the hazard function in Denmark (taken from: Svarer,

Michael (2002) "Determinants of Divorce in Denmark" Working Paper No. 2002-19, Aarhus Uni-

versity).

� Thinking about unemployment now, do you think there might be duration dependence? If so, is

it likely to be positive or negative? What about civil wars? (Figure 2 in appendix.)

We saw above that the hazard function is intimately linked to the distribution function of T in the

population. We saw that

� (t) =
f (t)

S (t)
:
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Hence, for a given distribution function F (t) it is straightforward to obtain the hazard function, and

once we know the hazard function we can easily investigate the nature of the duration dependence.

3.1. Nonparametric analysis

The obvious starting point in duration analysis is to use a nonparametric estimator of the hazard function,

which is based entirely on the distribution of durations in the sample. The Kaplan-Meier estimator is

the most common estimator of this kind. The sample survivor function for a sample of N observations

(with no censoring) is simply

S (t) =
# of sample points � t

N
;

and the sample hazard function is

� (t) =
(# of sample points � t+ 1)� (# of sample points � t)

# of sample points � t

� Illustration in appendix, Table 1.

Nonparametric hazards are easy to compute but can be misleading if there is heterogeneity in the

hazard rates across, say, groups of individuals. EXAMPLE: Appendix Tables 1-2 and Fig 3. It is therefore

usually desirable to control for (observed) heterogeneity - indeed, sometimes determining the e¤ect of an

x-variable on the hazard is what we are primarily interested in. Doing so nonparametrically is very di¢ cult

(for essentially the same reasons that estimating any multivariate regression model nonparametrically is

di¢ cult), which is why typically parametric methods are used.

Before looking into models allowing for x-variables, let�s consider two widely used parametric distri-

butions for T in this literature, namely the exponential distribution and the Weibull distribution.
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3.2. Parametric analysis

3.2.1. The exponential distribution

The simplest case is when T follows an exponential distribution:

F (t) = 1� exp (�
t) ; 
 > 0:

� The density function is obtained by taking the derivative of F with regard to t, thus

f (t) = 
 exp (�
t) :

� The survivor function is 1� F (t), thus simply

S (t) = exp (�
t) :

� The hazard function is

� (t) =
f (t)

S (t)
;

� (t) = 
:

Thus, if T follows an exponential distribution, then the hazard function exhibits no duration

dependence. This is why the exponential distribution sometimes is termed memoryless: the

exit rate is independent of how long you have survived.

Of course, the exponential distribution is quite a special case.
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3.2.2. The Weibull distribution

A more general distribution is the Weibull distribution, for which

F (t) = 1� exp (�
t�) ; 
 > 0; � > 0:

� We see straight away that a special case of the Weibull distribution is given by � = 1: Further, it

should be clear that

f (t) = 
�t��1 exp (�
t�) ;

and

S (t) = exp (�
t�) ;

thus

� (t) =
f (t)

S (t)
;

� (t) = 
�t��1:

Notice how the duration dependence is determined by the parameter �: if � > 1, then there is

positive duration dependence, while if � < 1 there is negative duration dependence. Estimating �

is thus of interest if we want to investigate the nature of the duration dependence.

While more �exible than the Exponential distribution, the Weibull distribution does constrain the

hazard function to be monotonic in time - i.e. processes in which the d� (t) =dt changes sign will not be

approximated well by the Weibull distribution. Another alternative approach, which is quite �exible, is to

use dummy variables for a suitable number of intervals. One such framework is the piecewise exponential

model.
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3.2.3. The piecewise exponential hazard

Recall that for the exponential hazard we have

� (t) = 
;

i.e. the hazard rate does not vary with time. A generalisation of this model is to divide the time axis

into W di¤erent segments, and only restrict the hazard to be constant within each segment. That is,

the hazard rate may �jump�at certain pre-speci�ed points in time. More precisely, de�ne W �duration

dummies�as follows:

d1 (t1) = 1 if T � t1; zero otherwise,

d2 (t2) = 1 if t1 < T � t2; zero otherwise,

d3 (t3) = 1 if t2 < T � t3; zero otherwise,

(:::)

dW (tW ) = 1 if T > tW ; zero otherwise,

where t1; t2; :::; tW are pre-speci�ed points in time (by the researcher). Then de�ne the hazard rate as

� (t) =
WX
w=1


wdw (t) ;

where 
1; 
2; :::; 
W ; are non-negative constants. This is the piecewise exponential hazard function.

Notice that if 
1 = 
2 = ::: = 
W ; this gives the exponential hazard discussed above. Figure 3 shows

what the piecewise exponential hazard for civil wars 1960-2000 looks like.1

The piecewise exponential hazard model is �exible in that the hazard function can move up and down

relatively freely. There are several other models that do this as well, but I do not go into further details

1From Collier, Paul, Anke Hoe­ er and Måns Söderbom, 2004, �On the Duration of Civil War,� 2004, Journal of Peace
Research 41:3, pp. 253-273.
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here (Stata has a big family of potential distributions that one can use). Instead I move on to discuss

determinants of the hazard rate other than time itself.

4. Explanatory Variables and the Hazard Rate

In many economic applications it seems quite likely that the duration variable T depends on a set of

explanatory variables. Clearly, if there exist a vector of explanatory variables x that impact on T , then

these variables x also impact on the hazard rate. Suppose that the variables in the x vector are all time

invariant - i.e. they do not change. To take into account the possibility that time invariant explanatory

variables a¤ect the hazard rate, we can write down a proportional hazard model as follows:

� (t;x; �) = � (x; �)�0 (t) ;

where � (x; �) is a non-negative function and �0 (t) (also non-negative) is called the baseline hazard.

By writing it like this, we are assuming that the that the baseline hazard is common to all individuals

while the hazard rate at a given point in time t di¤ers proportionally across individuals depending on

the x variables. We typically assume that

� (x; �) = exp (�1 + �2x2 + �2x2 + :::+ �KxK) � exp (x�) :

Now things start to look very familiar. Clearly, if we can estimate the �-parameters and the baseline

hazard, we will be able to answer two important questions:

1. How does the hazard rate vary with time? The estimated baseline hazard will shed light on this.

2. What are the other determinants of the hazard rate and what is their impact? The estimates

of the �-parameters will shed light on this. Notice that �1, for instance, is interpretable as the
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semi-elasticity of the hazard rate with respect to x1:

d ln� (t;x; �)

dx1
= �1:

Thus, a positive �1 would imply that...

� ...an increase in x1 is associated with an increase in the hazard rate and thus an decrease in the

expected duration; and

� ...an decrease in x1 is associated with an decrease in the hazard rate and thus an increase in

the expected duration.

To proceed towards an estimable equation, we need to specify a functional form for the baseline hazard

�0 (t). Several options are open to us:

� If the baseline hazard is exponential, then

� (t;x; �) = exp (x�) 
:

� If the baseline hazard is Weibull, then

� (t;x; �) = exp (x�) 
�t��1:

� If the baseline hazard is piecewise exponential, then

� (t;x; �) = exp (x�)
WX
w=1


wdw (t) :

Naturally, one can use di¤erent functional forms for both � (x; �) and the baseline hazard. The

principle is the same, however, so I do not dwell further on this issue here.
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4.1. Analysis of Single-Spell Data with Time-Invariant Explanatory Variables

The simplest case in duration data analysis is when our data consists of single durations (or �spells�) -

i.e. each individual/country/whatever is only observed once - and the variables in the x vector do not

change over time.

4.1.1. Flow or stock sampling?

The �rst issue we should worry about is how the data have been sampled from the population. The most

common way of sampling individuals is to sample from the �ow of individuals entering the state at some

point in time during the interval [0; b]. This is known as �ow sampling.

� If we are studying the duration between the �rst and the second birth, for instance, �ow sampling

would involve drawing a random sample of women from the population of women that became

�rst-time mothers during some suitable time interval, say the two-year window 1 January 2006 -

31 December 2007. The x vector would consist of data on the relevant explanatory time-invariant

variables, e.g. education, location, health, income etc. We would follow this group of women

over time and, for each individual, measure the time it takes until the second child is born. This

information gives us the duration data.

� An alternative way of sampling the data is to draw from the population who are in the state of

interest at the point in time b. In our example, this would involve drawing from the population

who on 31 December 2007 had exactly one child. That is we are sampling from the stock of women

with exactly one child at this point in time. Of course, in several cases the age of the child may be

more than two years, implying that the child was born before 1 January 2006. Such observations

of long durations would not have been included if we were sampling from the �ow but they would

if we are sampling from the stock. Further, spells that started and ended between 1 January 2003

and 31 December 2004 will not be included if we are sampling from the stock - simply because such

women had left the relevant �state�at 31 December.

11



Thus, the di¤erence in the sampling schemes can be summed up as follows:

� Flow sampling: we draw from the population of individuals that entered the state between time 0

and b;

� Stock sampling: we draw from the population of individuals that were in the state at a given point

in time, say b.

This is an important di¤erence, because the two sampling schemes will generally result in di¤erent

distributions of durations in our sample. More precisely, if we are sampling from the stock our sample

will consist of...

� more long durations, and

� fewer short durations

than if we are sampling from the �ow. And because the distribution of durations determines the

hazard rates and how these vary with time, it should be clear that how the data have been sampled has a

direct implication for how our results (e.g. regarding duration dependence) should be interpreted. Notice

that his is a form of sample selection problem: short durations are less likely to appear in your sample

than long durations, a phenomenon often referred to as length-biased sampling.

In most cases �ow sampling provides the best basis for empirical analysis, simply because it does not

give rise to the sample selection problem discussed above. Econometric methods designed to correct of

length-biased sampling exist, but I will not discuss these here. In what follows I will focus only on �ow

data.

4.1.2. Right censoring

Flow data are typically subject to right censoring, i.e. for some observations in the data set we do not

know when the duration ended. It is easy to see why this may arise in practice: after having drawn a

random sample from the population that entered (note) the state during the interval [0; b], we follow this

sample of individuals over time in order to get data on how long they remained in the state.
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At some point, however, we must stop and begin the analysis of the data. Observations of those

individuals who, at that time, have not yet completed their spells will be recorded in our data sets as

right censored durations. We don�t know how long these durations will turn out to be, all we know is

that they will be at least as long as the tracking period.

In the time to second birth example, for instance, our sample consisted of women who gave birth to

their �rst child some time during 1 January 2006 and 31 December 2007. We follow this group of women

over time to measure the time until the second child is born, but for practical reasons we do this for a

limited period only, perhaps �ve years. Thus, those women in the sample that by 31 December 2007 have

not yet given birth to a second child will have right censored durations.

Right censoring is a feature of our sample that is not (typically) shared by the population. For this

reason, we need to devise an econometric estimator that takes this form of censoring into account.

4.1.3. Maximum Likelihood Estimation

Now consider estimation of the duration model. Initially, suppose our sample consists of completed spells

only. As discussed in the previous paragraph, this may not be very realistic but it is a useful starting

point. De�nitions:

� ai = the time at which individual i enters the state of interest (the �beginning�);

� ti = the actual duration,

� xi = vector of explanatory variables.

We will use the method of maximum likelihood to estimate the parameters of the model. The density

function of the duration variable is denoted

f (tjxi; �) ;

i.e. the density is written as conditional on the explanatory variables in xi and the parameter vector �.

Because there is no censoring, the log likelihood function is simply the sample sum of individual likelihood
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contributions:

lnL =
NX
i=1

ln f (tijxi; �) ;

which, once we have speci�ed f (tijxi; �), is to be maximised with respect to the parameters �. Suppose

we use a proportional hazard model of the form:

� (t�;x; �) = � (x; �)�0 (t) ;

where

� (x; �) = exp (x�) ;

and suppose the baseline hazard function is Weibull:

�0 (t) = 
�t
��1:

By de�nition (see eq. (2.1)):

� (tjxi; �) =
f (tjxi; �)
S (tjxi; �)

;

thus

f (tjxi; �) = � (tjxi; �)S (tjxi; �)

= exp (xi�)�t
��1[exp[� (xi�) t�]];

and this is the expression that goes into the log likelihood function. The intuition is reasonably clear: the

likelihood observing a duration of length ti, conditional on the explanatory variables xi can be written

as the product of the likelihood of surviving until time ti and exiting from the state at time ti.

If the duration of individual i is right censored, all we have is the survival function:

f (tjxi; �) = [exp[� (xi�) t�]]:
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Hence, for a sample in which some observations are right-censored, you�d modify the likelihood slightly

and write:

f (tjxi; �) = [� (tjxi; �)]� S (tjxi; �)

f (tjxi; �) =
�
exp (xi�)�t

��1�� [exp[� (xi�) t�]];
where � = 1 for completed spells and zero for censored (incomplete) spells.

Discuss: Unobserved heterogeneity.
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Figure 2: Nonparametric Hazard of Peace while at War

Source: Collier, Hoeffler and Söderbom (2004).



Table 1: 
Illustration of Kaplan-Meier estimation of the hazard and survivor rates  
 
Number of observations in ‘data set’: N = 100. 
 

Duration 

(a) Number of 
individuals 'at 

risk' 

(b) 
Number 
of exits 

(c) Number 
of survivors

Hazard 
rate: 

(b)/(a) 

Survivor 
rate 
(c)/N 

1 100 30 70 0.30 0.7 
2 70 15 55 0.21 0.55 
3 55 10 45 0.18 0.45 
4 45 5 40 0.11 0.4 
5 40 5 35 0.13 0.35 

(…)      
 
  



Table 2: Illustration of the problem posed by heterogeneity in the hazard  
Pooling of heterogeneous sub-samples (X = 0 or 1). 
Sample with X=1 

Duration (a) Number of individuals 'at risk' 
(b) Number of 

exits (c) Number of survivors 
Hazard rate: 

(b)/(a) Survivor rate (c)/N
1 1024 256 768 0.25 0.75 
2 768 192 576 0.25 0.56 
3 576 144 432 0.25 0.42 
4 432 108 324 0.25 0.32 
5 324 81 243 0.25 0.24 
6 243 243 0 0.00 

Sample with X=0 

Duration (a) Number of individuals 'at risk' 
(b) Number of 

exits (c) Number of survivors 
Hazard rate: 

(b)/(a) Survivor rate (c)/N
1 1024 512 512 0.50 0.50 
2 512 256 256 0.50 0.25 
3 256 128 128 0.50 0.13 
4 128 64 64 0.50 0.06 
5 64 32 32 0.50 0.03 
6 32 32 0 0.00 

Pooled sample 

Duration (a) Number of individuals 'at risk' 
(b) Number of 

exits (c) Number of survivors 
Hazard rate: 

(b)/(a) Survivor rate (c)/N
1 2048 768 1280 0.38 0.63 
2 1280 448 832 0.35 0.41 
3 832 272 560 0.33 0.27 
4 560 172 388 0.31 0.19 
5 388 113 275 0.29 0.13 

(…) 0.00 

 



Graphical comparison of estimated hazard functions 
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Estimation of Duration Data Models: 
The Case of Civil Wars 
 
The examples below are based on data on the duration of civil wars 
1960-2000. The data set can be downloaded at  
 
http://users.ox.ac.uk/~ball0144 
 
See "On the Duration of Civil War," by Paul Collier, Anke Hoeffler and 
Mans Soderbom, Journal of Peace Research, 41:3, 2004, pp. 253-73, for 
details on this research.  
 
 
> use "d:\warduration\jpr_revised03\estsample.dta", clear; 
 
/* First, I declare the data to be duration data. I have monthly duration data 
(mo), each war is indexed by the variable indsp, and cens is a dummy variable 
equal to 1 if the war had ended by 31/12/2000, and 0 if it hadn’t (in which 
case it would have been right censored). */ 
 
. stset mo, id(indsp) f(cens); 
 
                id:  indsp 
     failure event:  cens != 0 & cens < . 
obs. time interval:  (mo[_n-1], mo] 
 exit on or before:  failure 
 
------------------------------------------------------------------------------ 
     4625  total obs. 
        0  exclusions 
------------------------------------------------------------------------------ 
     4625  obs. remaining, representing 
       55  subjects 
       48  failures in single failure-per-subject data 
     4625  total analysis time at risk, at risk from t =         0 
                             earliest observed entry t =         0 
                                  last observed exit t =       364 
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/* Some simply summary statistics for the duration variable */ 
 
. stdes ; 
 
         failure _d:  cens 
   analysis time _t:  mo 
                 id:  indsp 
 
                                   |-------------- per subject --------------| 
Category                   total        mean         min     median        max 
------------------------------------------------------------------------------ 
no. of subjects               55    
no. of records              4625    84.09091           1         73        364 
 
(first) entry time                         0           0          0          0 
(final) exit time                   84.09091           1         73        364 
 
subjects with gap              0    
time on gap if gap             0           .           .          .          . 
time at risk                4625    84.09091           1         73        364 
 
failures                      48    .8727273           0          1          1 
------------------------------------------------------------------------------ 
 
 
Next I will consider the following variables as determinants of the hazard 
rates: 
 
rgdpch Per capita income 
elf  Ethnic fractionalization 
gini_m Income inequality 
ginmis Missing inequality  
logpop ln Population 
y70stv Dummy for 1970s 
y80stv Dummy for 1980s 
y90stv Dummy for 1990s 
 
More general specifications are considered in the Collier et al. paper.
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Model 1: Exponential  
 
streg gini_m ginmis rgdpch elf elf2 logpop y70stv y80stv y90stv, 
dist(exponential) nohr; 
 
 
Exponential regression -- log relative-hazard form  
 
No. of subjects =           55                     Number of obs   =      4625 
No. of failures =           48 
Time at risk    =         4625 
                                                   LR chi2(9)      =     34.93 
Log likelihood  =   -84.172747                     Prob > chi2     =    0.0001 
 
------------------------------------------------------------------------------ 
          _t |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
      gini_m |  -.1040502   .0241029    -4.32   0.000    -.1512911   -.0568093 
      ginmis |   -4.85638   1.058398    -4.59   0.000    -6.930801   -2.781959 
      rgdpch |   .3342252   .1169375     2.86   0.004      .105032    .5634184 
         elf |  -.0571514   .0253769    -2.25   0.024    -.1068893   -.0074135 
        elf2 |   .0548429   .0267493     2.05   0.040     .0024152    .1072706 
      logpop |  -.3174559   .1252571    -2.53   0.011    -.5629553   -.0719565 
      y70stv |   .1912412   .4537672     0.42   0.673    -.6981263    1.080609 
      y80stv |  -1.161242   .4812326    -2.41   0.016    -2.104441    -.218044 
      y90stv |  -.6954615   .4734954    -1.47   0.142    -1.623495    .2325724 
       _cons |   6.299516   2.624996     2.40   0.016     1.154617    11.44441 
------------------------------------------------------------------------------ 
 
 
Note: The option nohr specifies that coefficients rather than exponentiated 
coefficients are reported.
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Model 2: Weibull 
 
streg gini_m ginmis rgdpch elf elf2 logpop y70stv y80stv y90stv, dist(weibull) 
nohr; 
 
 
Weibull regression -- log relative-hazard form  
 
No. of subjects =           55                     Number of obs   =      4625 
No. of failures =           48 
Time at risk    =         4625 
                                                   LR chi2(9)      =     30.17 
Log likelihood  =   -84.082074                     Prob > chi2     =    0.0004 
 
------------------------------------------------------------------------------ 
          _t |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
      gini_m |  -.1090997   .0270188    -4.04   0.000    -.1620555   -.0561439 
      ginmis |  -5.100231   1.212371    -4.21   0.000    -7.476434   -2.724027 
      rgdpch |   .3568975    .129353     2.76   0.006     .1033702    .6104247 
         elf |  -.0598764   .0262609    -2.28   0.023    -.1113469   -.0084059 
        elf2 |   .0570066   .0273157     2.09   0.037     .0034687    .1105445 
      logpop |  -.3271305   .1272727    -2.57   0.010    -.5765804   -.0776806 
      y70stv |   .1627748   .4584631     0.36   0.723    -.7357963    1.061346 
      y80stv |  -1.236041   .5131423    -2.41   0.016    -2.241782   -.2303007 
      y90stv |  -.8034153   .5397958    -1.49   0.137    -1.861395     .254565 
       _cons |   6.513506   2.684383     2.43   0.015     1.252212     11.7748 
-------------+---------------------------------------------------------------- 
       /ln_p |   .0549738   .1277022     0.43   0.667    -.1953178    .3052655 
-------------+---------------------------------------------------------------- 
           p |   1.056513    .134919                      .8225732    1.356985 
         1/p |   .9465099   .1208714                      .7369277    1.215697 
------------------------------------------------------------------------------ 
 
No evidence of duration dependence.
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Model 3: Piecewise Exponential  
 
d1  Duration dummy 1st and 2nd years of war 
d2  Duration dummy 3rd and 4th years of war  
d3  Duration dummy 5th and 6th years of war  
d4  Duration dummy 7th year of war and beyond  
 
streg gini_m ginmis rgdpch elf elf2 logpop y70stv y80stv y90stv d2-d4, 
dist(exponential) nohr; 
 
         failure _d:  cens 
   analysis time _t:  mo 
                 id:  indsp 
 
Exponential regression -- log relative-hazard form  
 
No. of subjects =           55                     Number of obs   =      4625 
No. of failures =           48 
Time at risk    =         4625 
                                                   LR chi2(12)     =     42.41 
Log likelihood  =   -80.429995                     Prob > chi2     =    0.0000 
 
------------------------------------------------------------------------------ 
          _t |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
      gini_m |  -.1244463   .0284179    -4.38   0.000    -.1801444   -.0687482 
      ginmis |  -5.867928   1.277403    -4.59   0.000    -8.371591   -3.364265 
      rgdpch |   .3651031   .1322248     2.76   0.006     .1059472     .624259 
         elf |  -.0628267   .0258742    -2.43   0.015    -.1135392   -.0121143 
        elf2 |   .0581252   .0270411     2.15   0.032     .0051256    .1111247 
      logpop |  -.3163905   .1230657    -2.57   0.010    -.5575948   -.0751863 
      y70stv |   .0077905   .4625409     0.02   0.987    -.8987729    .9143539 
      y80stv |  -1.420202   .5203341    -2.73   0.006    -2.440038   -.4003656 
      y90stv |  -1.162059   .5416506    -2.15   0.032    -2.223675   -.1004433 
          d2 |  -.8067415   .5742936    -1.40   0.160    -1.932336    .3188533 
          d3 |  -.0010657   .5606172    -0.00   0.998    -1.099855    1.097724 
          d4 |   .6098389   .4464024     1.37   0.172    -.2650937    1.484771 
       _cons |   7.433105   2.707863     2.75   0.006     2.125791    12.74042 
------------------------------------------------------------------------------ 
 
. exit; 
 
end of do-file 
 
. test d2=d4 
 
 ( 1)  [_t]d2 - [_t]d4 = 0 
 
           chi2(  1) =    5.86 
         Prob > chi2 =    0.0155 
 

A graph of the estimated hazard function is provided on the next page.
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Figure 2: Piecewise Exponential Estimates of the Hazard Function 
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Note: The hazard function based on the preferred specification (i.e. the reference model) 

is calculated using the formula ]])(ˆˆexp[]ˆ[exp[ ∑+⋅
w ww tdx λαβτ , where  are the 

parameter estimates and 

Wλλαβ ˆ,...,ˆ,ˆ,ˆ
2

τx denotes a vector of sample means of the explanatory 

variables. The hazard function without regressors was calculated as explained in the notes 

to Figure 1. The underlying regression is not reported but is available on request from the 

authors.  

Source: Collier et al. (2004). 
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