Temple University Department of Economics

Econometrics I Estimation

1. Consider two random variables X and Y and the scalar parameter θ related by $f(x|\theta) = \theta e^{-\theta x}$ for x > 0 and $\theta > 0$, and $f(y|x,\theta) = f(y|x) = x e^{-xy}$ for y > 0 and x > 0. Suppose the researcher wishes to estimate θ , observes Y, but does not observe X. Obtain analytical expressions for each of the following three likelihood functions:

1.
$$\Lambda_1(\theta; y) = f(y|\theta) = \int_0^0 f(y|x)f(x|\theta)dx$$

2. $\Lambda_2(\theta; \mathbf{x}, \mathbf{y}) = f(\mathbf{y}, \mathbf{x}|\theta)$

3. $\Lambda_{_3}(\theta,y;x)=f(x|\theta,y)$ Which of the three is an appropriate likelihood function?

2. Suppose Y₁ and Y₂ are independently distributed with the same variance σ^2 , but with different means: $E(Y_1)=2\theta$ and $E(Y_2)=4\theta$. Consider the estimator $\hat{\theta} = w_1Y_1 + w_2Y_2$, where w_1 and w_2 are unknown weights. Find w_1 and w_2 so that $\hat{\theta}$ has the smallest possible variance, and yet is unbiased.

3. Suppose Y_t $(t=1,2,\ldots,T)$ are i.i.d. Bernoulli random variables such that $P_t = P(Y_t=1) = \Phi(\alpha)$ and $1-P_t = P(Y_t=0) = 1 - \Phi(\alpha)$ where $\Phi(\cdot)$ is the standard normal cdf. The sample corresponds to a cross section of individuals. The first m individuals are homeowners and the last T-m are renters. Find the maximum likelihood estimator for α .

4. Suppose a random sample of size T=7 from a N(μ, σ^2) yields y = 5 and s² = 1.96. Find a 95% confidence interval for μ when: a. σ^2 = 2 is known. b. σ^2 is unknown.