Temple University Department of Economics

Econometrics I Functions of Random Variables and Sampling Distributions

1. Let X_1 and X_2 be independent random variables each with probability density function f(x) = 2x for 0 < x < 1, and zero otherwise. Define $Y = X_1/X_2$. Find P(Y > 1/2). (Hint: The probability density for Y defined as the ratio of two r.v.'s is in

 $g(Y) = \int\limits_{-\infty}^{\infty} |x_2| f(x_2\,y,x_2)\,dx_2 \label{eq:general}$ general given by

2. Consider the sample values Y_t (t=1,2,...,T). Show:

$$\max_{1 \le t \le T} |y_t - \overline{y}| \ge \left(\frac{T-1}{T}\right)^{\frac{1}{2}} s$$

where y and s denote the realized sample mean and sample standard deviation.

3. Let X denote the hours of study required for a passing grade in an econometrics course. Assume that the distribution of X is $N(147.8, 12.3^2)$.

a. Find P(X<163.3).

b. Suppose you sample 25 econ ometrics students at random. What is $P(\overline{X} \leq 159.9)_{?}$

c. Find constants a and b such that P(a<S 2 <b) = .90.