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IS IT A DEMAND CURVE, OR IS IT A SUPPLY CURVE?
PARTIAL IDENTIFICATION THROUGH INEQUALITY
CONSTRAINTS

Edward E. Leamer*

HIS article fully describes the sets of maxi-
mum. likelihood estimates of parameters in
two-equation under-identified simultaneous equa-
tion systems, and uses these characterizations to
comment on the usefulness of inequality con-
straints on the parameters. It is shown in particu-
lar that in a demand-supply system with zero
covariance between the residuals and with the
demand elasticity assumed to be negative and the
supply elasticity assumed to be positive, the set
of maximum likelihood estimates for one elastic-
ity is the interval between the direct least-
squares estimate and the reverse least-squares
estimate, and the set of maximum likelihood es-
timates for the other parameter is the half-line in
which the parameter is assumed to lie. Thus it is
proper to treat the regression of quantity on price
as an (attenuated) estimate of the demand curve
if the estimate is negative and to treat it as an
{attenuated) estimate of the supply curve if the
estimate is positive. Most modern theoretical
econometricians view this estimation method
with incredulous amusement. In fact, the use of a
method like this by Schultz {1928) can be said to
have made him the reluctant mother of modern
econometrics, the gang of fathers being Working
(1927), Leontief (1929) and Frisch (1933). The
modern exception is Maddala (1977, p. 244} who
uses Frisch’s (1933) observation that the proba-
bility limit of direct least squares is a weighted
average of the two elasticities to conclude some-
what informally that direct least-squares is an
attenuated estimator of one elasticity or the
other. :
Section I of this paper is an analysis of the
simple supply-demand system with uncorrelated
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residuals. Tt is shown that the interval between
the least-squares estimate and the reverse least-
squares estimate consistently bounds one slope
or the other. Knowledge of the signs of the slopes
then determines whether this interval applies to
the demand curve or to the supply curve..The
residual variance ratio can also be bounded. If
the squared correlation exceeds one-half and if
quantity and price are negatively correlated, then
dstimates of the demand variance are necessarily
less than estimates of the supply variance. This is
the precise inverse form of the result of Working
{1927) that the data trace out the demand curve if
the supply is more variable than the demand. Of
course, the opposite statement applies if the cor-
relation is positive.

In section II, the model is generalized to admit
exogenous variables, and it is shown how in-
equalities on the coefficients of these variables
can partially identify the supply and demand
slopes. The approach is similar to Marschak and
Andrews (1944), but the inequalities which are
considered here are weakened forms of the usual
identifying restrictions. The reported algorithm
for finding sets of maximum likelihood estimates
subject to this form of constraint may be more
useful in practice than the Marschak-Andrews
treatment of non-linear constraints in production
theory.

The last section contains an application of
these results motivated by a paper by Houthak-
ker (1979). Houthakker presents correlations be-
tween output and prices for fifty-nine industries,
only five of which are positive, from which he
concludes that prices are more influenced by
supply than by demand. The application in sec-
tion III is similar in approach but uses the more
readily available aggregated data and also em-
ploys variables other than current price and
quantity. When the equations are estimated with
data in levels, four of the five industries have
negative partial correlations. Only one squared
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partial correlation is greater than one half (con-
struction), and no conclusion about the relative
variability of demand versus supply is warranted
in the other four cases. When lagged variables
are included in the model, all five industries have
negative partial correlations between quantity
and price. Only in the case of transportation is
the squared partial correlation high enough to
conclude that the supply curve is more variable
than demand.

I. A Model without Exogenous Variables

We first consider estimates of the following
simultaneous equations systemnt:

Qc=a+|8PE+€£
Q=vy+ 0P + 1

(1)
T, @)

where O, and P, are observable, where «, 8, v
and 4 are fixed unobservable parameters, and
where €, and u, are serially and contemporane-
ously uncorrelated normal random variables with
zero means and variances o2 and o, The re-
duced form of this model is

t=1,...

Pi=la+te—vy— u)e-pa)
Q= ([e + &l — [y + wl]B)/ (8 — B).

Thus (P,, Q,) comes from a bivariate normal
population with moments

E(Py, Q) = (@ — vy, a8 —yB)/(0 - B) ()

VP, Q) =
al+ a,* Hod + fa

Aol + Bo? gl + B ? )

© - 8.
Maximum likelihood estimation in this case
requires that the sample moments be set equal to
the population moments (3) and (4). If 6 and 8
were known, the sample means could be used to
solve uniquely for @ and v using equations (3),
provided that 8 # 6. Since otherwise this places
no restrictions on 8 and &, it is the sample vari-
ance matrix which must be relied on to determine
B and 4. Setting sample moments equal to popu-
lation moments yields the three equations

& - Bs,
@ - Brse -
(0 — BYsy =

where s5,* and s,? are sample variances and s, is

1

&ez + GA—u_2

=3 o P -

q20£2 + )620-1!.2
-~ sl L3 2

852 + pBo,
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the sample covariance. The first and last of these
equations can be written as

KANTYIN ;‘Z: jé-or

=[]
—ng, +s,,q

which can be inserted into the second to produce
B(Bs,® — 5p0) + B850 + 550) = (B — 8)s,?,
which in turn can be rewritten as
@ — bYB - b) = (g — LIsi/s? )
where b is the ordinary least-squares estimate

B-06 -8

b = SpalSp*s
and r,.2 is the squared sample correlation
—_ 2.2
Toa® = Spg’ /85’84

The set of maximum likelihood estimates of A
and & therefore is the hyperbola (6) intersected
with the region which determines positive esti-
mates of the variances (5), that is,

B-b/B-8=0
b-6)/B-86=0

but these constraints are redundant since they
are implied by (6) using thé information that

The hyperbola of maximum likelihood esti-
mates (6) is graphed in figure [ given the assump-
tion that the least-squares estimate is positive. It
may be noted that any estimate of 2 is possible,
and any estimate of 4, but given one, there is a
unique maximum likelihood estimate of the
other. In particular, if one is known to be zero,
then the estimate of the other is the reverse re-
gression estimate

b, = 5500 = b/reg®; (N

or if one is known to be infinite, then the estimate
of the other is least-squares, b.

The usefulness of inequality constraints is
clear from figure 1. If equation (1} is taken to be
the demand curve, 8 < 0, then only the part of
the hyperbola to the left of the #-axis is relevant.
As drawn, the maximum likelihood estimates of
the supply slope 8 must lie between least-squares
and reverse least-squares: 0 < b < 8§ < b,.
Knowledge that the supply slope is positive,
# = 0, restricts the estimate of 8 to be either
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FIGURE | .—MaXIMUM LIKELIHOOD ESTIMATES OF 3 AND 8
b= 8p0/5,° B = 5750 = BIr0]

4

larger than reverse least-squares or smaller than
Jeast-squares: A < b or b, < . Together, the
inequalities 8 < 0, & > 0 and a positive least-
squares estimate, # > 0, imply the inequalities

B<0, 0<b<b<h,. 8)

Alternatively, if the least-squares estimate is
negative, these inequalities become

b,<fA<b<0, 0<8. 9)

In other words, when the regression of quan-
tity on price vields a positive estimate, we may
assume that this is an attenuated estimate of the
supply curve and that the data contain no useful
information about the demand curve. If the esti-
mate is negative, the number may be treated as
an attenuated estimate of the demand slope, and
we may assert that the data contain no useful
information about the supply curve.

Under general conditions, maximum likeli-
hood estimators are consistent, and there is noth-
ing in this problem to suggest that (8) and (9) are
not consistent bounds. It is easy to show this,
using the fact that # and b, are consistent esti-
mates of the corresponding population moments

plim (b) = (602 + Ba,2)/(cé + o) (10)
plim (b,) = (@02 + B°0,%)/ (602 + Ba,?).

(11)

Equation (10) is a weighted average of 4 and 3.

Therefore as shown by Maddala (1977, p. 244), 8
= plim (b) = 4. The other bound can be demon-
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strated by exploiting the symmetry of the prob-
lem. From plim (b8 = {§'¢c> +
B1B% 2/ (8%a® + BPa,?), we obtain 871 = plim
(.77} = 671, Thus if plim (b7} < 0, then plim
(b,) < B.

Bounds for the coefficient estimates imply
bounds for estimates of the variance ratio which
is the following function of 8 and 6:

Glja,t = (Bs,” — Spq)/(sgq — 8s,%)

=B - b)/b - 8).

In the case when least-squares is positive b > 0,
as the estimates of (3,8) vary from {0, b,.) ta (—s,
b) the variance ratio varies from —s,,/(sp, —
$55p2 Spq) = /(g™ — 1) to o

(rpq‘_z - 1}_1 < 0‘.(2/0‘“.&2 < o,

If r,,* exceeds one-half, the lower bound exceeds
one, and estimates of the demand variance
necessarily exceed estimates of the supply vari-
ance; otherwise one is a possible estimate for the
variance ratio. Thus it is necessary but not
sufficient to have a negative correlation in order
to conclude that the supply curve is more un-
stable than the demand. Similarly, if » < 0, the
variance ratio is bounded by

0<a2/o, <ry?— 1,

with #,,2 > [/2 again necessary to bound the
estimate away from one.

It is of historical interest to note that Leontief
(1929) includes the hyperbola (6) although ex-
pressed in the form 8 = (fs,, — 5,°)/(05,> — 5,4)-
Actually he uses a pair of hyperbolas formed by
splitting the data set into two parts, and is able to
solve for a pair of estimates which jointly satisfy
both hyperbolic equalities. This procedure
brought down upon him the wrath of Frisch's
(1933) Pitfalls, which is devoted almost com-
pletely to debunking the method.

There is of course a problem with the Leontief
procedure. If the variances o,” and o,* are the
same in both halves of the sample, then
asymptotically the two least-squares estimates
will necessarily coincide, as will the two hyper-
bolas. Moreover, the two estimates of the vari-
ance ratio necessarily differ in any finite sample.
The method thus rests on the unlikely assump-
tion that the slopes 8 and 6 are constant over
time but the variances are not. Still, Leontief did
have the hyperbola properly defined, which is
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only one short step from the results in this paper.
It is therefore surprising that Leontief’s con-
tribution has been so completely ignored by the
post-1940 econometrics literature. The fault
seems to me to lie with excessive attention to
asymptotic properties of estimators and in-
sufficient interest in the shapes of likelihood
functions.

I1. A Model with Exogenous Variables

We next consider a more general model in
which an observable variable x; affects both the
quantity supplied and the quantity demanded. If
there is no a priori information about the signs of
the new coefficients, then the set of maximum
likelihood estimates of 8 and 4 is altered only in
that the sample moments are computed after con-
trolling for x,. In other words, the direct and
reverse regressions include the variable x,. If
there are equality or inequality constraints on the
x-coefficients, then the set of estimates of 8 and 4
may change more dramatically.

The model (1) and (2) is altered to allow o: and
v to be functions of x:

a _—
Y = va t YiXe
This leaves the variance (4) unchanged but alters
the means to
E(P;, Qr|xc) = {ag— vo T [QL - Tl]xu e
— v + [0 — v:18]x)/(6 — B).
The two x-coefficienis in this reduced form are

estimated by regressing P, on x, and ¢, on x,
respectively. These will be indicated by 4, and d,

oy T oo

(ot =2l [ ag-ya ] o
which can be sohied for {é&,, ¥,) in terms of @, B)
5=la6) <

The logic that leads to estimates of 2 and @ is
the same as before except that the sample mo-
ments control for x. The least-squares ¢stimate of
b in {6) is therefore replaced by least-squares
controlling for x, which for ease of notation will
still be denoted by b:

b = bygr = Spgz/Sps’-.
The other moments are similarly altered. In par-
ticular, the reverse regression estimate, formed
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first by regressing p on g and x and then solving
the equation for g as a function of p and x, is

b, = b/ry..*
where
A 2
Fogr: = SpgptSpr Sex -

Thus the couple (8,6) lies on a hyperbola cen-
tered at least-squares, and the x-coefficients are
computed using (12).

For the sake of interpretation, it may be shown
using equation (12) that if 2 is set equal to the
least-squares value, then &, is also equal to the
least-squares value, and if 3 is reverse least-
squares than &; is reverse least-squares. The
least-squares estimate of «, given 8 is formed by
regressing , — 8P, on x,

)851‘13] ledp’

which is just equation (12). The reverse regres-
sion estimate of &, is computed by first estimat-
ing the reverse equation P, = (Q, — oy — a1x, —
€ )/ and then letting &, be the coefficient on x
divided by the coefficient on @. Given #, this
estimate is formed by regressing P, — 87'Q, onx,:

Q= =B 5;7% [$2p = B7'S0e] = dy — B4y,

which is just equation {12}).

Now we consider the usefulness of information
about @, and y, for estimating 8 and 4. The tradi-
tional identifying restriction is that the coefficient
of the exogenous variable is zero in one equation.
I «, is known to be zero, then (12) determines
the estimate of g

ré =d,/d, = byy,

which is the instrumental variables estimate or
equivalently the two-stage least-squares esti-
mate. The other equation is also identified since
given @ we can solve for 4 using hyperbola (&)

6= by = bpgo + (Fyer” — D)sg/
bpqm):

which will henceforth be called the ‘“‘hyperbolic
estimate.’’

Less precise knowledge of &, may also be use-
ful. The exact algorithm for finding maximum
likelihood estimates given inequality constraints
on «; and y, as well as 8 and 6 is tedious, but not
difficult. Given equations ¢12), the sign pattern
for «, and v, selects a quadrant located at {b;p,

Gy = S 80 —

Spo by —
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bry) within which (8, 8) must lie. This may or
may not further restrict A and 8 given that they
are already restricted to lie in the quadrant
8 < 0, § > 0. Suppose, for example, that it is
known that &, > 0 and ¥, > 0. Then from (12),
estimates must be chosen such thatd, — 3d, > 0
and d, — 8d, > 0. These inequalities sometimes
further restrict the set of estimates. A listing of
all cases is provided in table 1, where *‘no solu-
tion”” means that the constraints are mutually
contradictory in the sense that the sample mo-
ments violate the assumed constraints. If this is
treated as a small sample aberration, then maxi-
mum likelihood estimation ¢an be done given the
list of constraints. This will ordinarily imply a
unique maximum likelihood estimate.

The general case with many exogenous vari-
ables is also straightforward, though the book-
keeping is still more involved. The constants «
and ¥ in (1) and (2) become

!
li's g + Z Xy

i=1

!
Yo t Z YiXe

i=1

¥

and equation {I2} becomes
a—’«; - d«n - Jédpi
[’S’fJ F[da:_ édm']’
where 4, and d, are the vectors of reduced form
coefficients from the two equations. If it is

known that e; = 0, then equation (13) implies the
consistent estimate of 3,

,G - bIV(I qz/dpu

which is the two-stage least-squares estimator,
or, equivalently, the instrumental variables es-

Ly oouyd (13)
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timator with x,; serving as an instrument for P;.

Estimation with inequality constraints on the
coefficients proceeds as follows. Let the given
restrictions be «; sgn {&;) =0 and v, sgn (y,) =0
where sgn is the sign function with sgn = 0 if the
restriction is not assumed. Then these in-
equalities generate restrictions on 8 and 6 from
equation (13)

sgn (o) (dy — @dpi)
sgn {(y;) (dy — 6dy)

If these restrictions, together with 8 sgn (8) > 0
and & sgn {#) > 0, are not mutually exclusive
they ldentlfy abox of feasible estimates 8, < A <
,BM, 6, < § < 8. This box is intersected with the
hyperbola of estimates to form the set of maxi-
mum likelihood estimates. If it is known that
A > 0and § < 0, then the box lies in the second
quadrant, and when intersected with the hyper-
bola produces a curve segment of estimates. At
the end points of this hyperbalic segment, either
& or 8 will equal an instrumental variables esti-
mate with one of the exogenous variables serving
as an instrument for P. In that sense, the above
describes an algorithm for selecting an instru-
mental variable from a list of candidates.!

= (
= Q.

! Inequality constraints in a multi-equation model are mare
difficult to use. The model is written as BY = Tz + 4, where ¥
is the vector of endogenous variables, z is the vector of
exogenous variables and i is the vector of residuals, normally
distributed with zero means and diagonal covariance matrix
D. Regressing ¥ on z produces the reduced form caefficients
m and the residual covariance matrix S. Given B, we may
solve for estimates of ' and D: ' = Bxr and D = BSB".
Inequalities for E' imply linear inequalities on estimates of B,
but the diagonality of D implies that pairs of rows of B, say 8;
and 3,, have zero inner products A°,.53; = Q. This sequence of
quadratic constraints is difficult to work with except in the
two-dimensional case.

TABLE 1.—CONSTRAINTS ON MaXIMUM LIKELIHOOD ESTIMATES
A<0,8=0,a =0,y =0

Estimates Constraints on 2 Canstraints on @ Constraints an &,2/&,°
b d, by Lower Upper Lower Upper Lower Upper
+ + + b, < by — a9 b b. (G Y o
+ + + b by < b, —m by b by 1% B
+ + * by < b No solution . - -
+ — T - Na solution : : ) )
+ - - by it by by (- vt
— + + b, by 0 by 4 ri—1
- + - . No solution : ' )
— - + b < by - No solution . : . :
- - - b < by < b b b by @ ¢ Pt
- - - by < b b, b ] o 1 TG |

Fr= Spq-.zysp-z%q-zzs V= {by — b}/ (b — bry)
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III. AnExample

This section contains an example based on
U.S. annual data for five aggregated industries.
The quantity variable is the industry’s product in
1972 dollars. The price variable is the industry’s
implicit defiator divided by the GNP deflator.
Current and constant dollar product, and the
GNP deflator 1947-1978 are all taken from The
National Income and Product Accounts of the
United States, 1929-1974, Staristical Tables,
supplement to the Survey of Current Business,
and from the July 1977 and 1979 volumes of the
Survey. The only other variable is the total civil-
ian employment with data from Business Condi-
tions Digest, March 1980, and for 1947 from His-
torical Statistics of the U.S.

A complete econometric study of the demand
and supply relationships in these aggregated in-
dustries would necessarily involve a more com-
plicated model. For the purpose of illustrating the
usefulness of inequality constraints, the simple
madel is adequate. For each industry, I am sup-
posing that all other goods can be aggregated into
the composite ““GNP."" The size of the civilian
employment determines the size of the produc-
tion possibilities frontier relating the maximum
possible output of the industry to different levels
of output of the alternative product **GNP.”* The
supply curve of the industry associates with any
given slope of the production frontier (i.e., rela-
tive price) a level of the industry's output. De-
mand is assumed to result from the maximization
of a well behaved utility function subject to a

THE REVIEW OF ECONOMICS AND STATISTICS

consumption possibilities constraint, which de-
pends on the relative price and real income, and
therefore on the relative price and the labor
force. Thus the labor force is assumed to have a
positive effect on both quantity demanded and
quantity supplied.

This formulation obviously leaves out many
complications. It includes no measure of capital.
Labor is assumed to be costlessly mobile be-
tween industries. Expectations play no role. The
aggregation issues are entirely ignored. Be that
as it may, the regressions of quantity on price
and labor force, and price on quantity and labor
force are reported in table 2. The latter regres-
sion is inverted to form the reverse regression.
For four of the five industries, the estimated
price elasticity is negative, and if there were no
knowledge of the sign of the labor force vari-
ables, we would take this to be an attenuated
estimate of the demand elasticity. The intervals
between the direct and reverse regressions are
sometimes short enough to be useful. Agricul-
tural demand is estimated to be rather inelastic,
as is mining. Transportation and construction
have relatively high estimated elasticities.

In order to make use of the inequalities on the
coefficients of the employment variable, it is
necessary to compute the reduced form, reported
in table 3. The relevant parts of tables 2 and 3 are
inserted into table 4, and bounds are computed
by referring to table 1. In the case of the agricul-
tural industry, the additional information did not
prove useful, and estimates of the demand elas-
ticity are consfrained to the interval between the

TaBLe 2.—EsTIMATED REGRESSIONS, STRUCTURAL Form

Sector Quantity Price Empioyment R D.W. Yoga®
Agriculture { —0.11 (.03} 0.55 (.04) .90 1.27 26
-2.4 (.74) 1 1.00 (.47) A5 .63
(Reverse Reg.) I -0.41 0.42
Construction 1 —1.67 (.19} 2.72 (.16) .92 45 N
—0.44 (.05} 1 1.38 (.09) .89 .43
(Reverse Reg.) 1 -2.27 3.13
Manufacturing 1 0.80 (.43) 2.55 (23 .95 42 10
0.13 (.07) 1 —0.78 (.18) .86 .29
(Reverse Reg.) 1 7.61 592
Mining | —0.19 {.04) 1.22 {.05) 96 .93 41
—1.1 (.48) | 1.55 (.62) 4] 41
(Reverse Reg.) 1 — (.47 1.19
Transportation 1 -0.78 {{18) 1.33 (.07) 98 74 48
~0.60 (.12) | 0.61 (.19) .82 .92
(Reverse Reg.) 1 —1.66 1.01

Mate: All variables in logarithms; standacd errars in parentheses; D.W. = Durbin-Watson statistic.
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TagLE 3.—ESTIMATED REGRESSIONS, REDUCED ForM

Residual Sum-of-Squares

Employment R? D.W. Quantity Price

Agricuiture .

Quantity 0.60 (.04) 86 1.12 039 —.091

Price —0.41 .20} 12 0.43 -.09] 813
Construction

Quantity 1.60 (.19} 71 0.11 732 322

Price 0.67 (.10} .62 14 -.322 193
Manufacturing

Quantity 2.15 (.09) 95 0.34 .184 024

Price —0.49 (.04) .84 0.19 024 A3
Mining

Quantity 1.24 (.068) 93 (.50 .080 -.172

Price —0.10 (.21) 0l 0.20 -7 911
Transportation

Quantity 1.60 (.05) 97 0.96 .057 —.035

Price —0,36 (.05) .66 127 —.035 045

Nate: All variables in logarithms; standard errors in parentheses; D.W. = Eurhin-Watsan statistic.

reverse and direct regressions. No constraint
applies to 4, and the partial R? is not high enough
to assure that the estimates of the demand re-
sidual variance are necessarily less than esti-
mates of the supply residual variance.

In contrast, the extra information is useful for
estimating the construction elasticities. The labor
force variable can be used as an instrument for
price when estimating the supply ¢lasticity, in the
sense that the upper bound for § is the instrumen-
tal variables estimate, 2.38. The corresponding
“hyperbalic'' estimate of 8, —1.92, becomes the
upper bound for 3. Notice that construction is
the only industry in which estimates of the de-
mand variance are necessarily less than esti-
mates of the supply variance. :
~ For manufacturing, the inequalities on the
labor force coefficients also prove useful, and the
labor force variable becomes an instrumental
variable for estimating the demand curve. For
mining and transportation, the extra inequalities
prove useless and only the demand elasticity is
constrained.

TaBLE 4, —ESTIMATES AND BoUNDS £OR PRICE

The result that estimates of the construction
supply variance necessarily exceed estimates of
the demand variance is troubling since one might
have supposed at the outset that construction
demand is highly variable. Measurement error,
especially in the price variable, can always be
used as an explanation. The dependent variable
“‘quantity’’ is actually a measure of value of out-
put divided by the price index, and as a result will
have a negative correlation with price if mea-
surement errors are important encugh. In his
study of more disaggregated data Houthakker
(1979, p. 249) writes, “*Although an entirely con-
clusive answer cannot be given, my own tenta-
tive judgment is that measurement error is not
the main source of the negative correlation.”” I
am somewhat more suspicious.

Another source of concern with these esti-
mates is that the model incorporates no time-
series phenomena, yet the low Durbin-Watson
statistics in table 2 point to the importance of
lagged variables. For this reason, I will now in-
clude in the model lagged values of employment,

ELASTICITIES AND RESIDUAL VARIANCE RaTio?

. . Bound
Estimates Bound for g Bound for 4 for &2/a 2
b b, d, d, by Lower Upper Lower Upper Lower Upper
Agriculture —.11 -0.42 —-0.41 0.60 —1.46 —0.42 -0.11 ¢ o 0 2.8
Construction -1.67 -2.27 (.67 ].60 2.38 —-2.27 -1.92 0 2.38 0.06 0.4
Manufacturing 0.830 7.61 —0.4% 2.15 —4.,39 —4.39 ( 1.86 7.61 0.11 4.9
Mining ~0.19 —0.47 —0.10 1.24 ~12.4 —0.47 —-0.19 0 @ 0 1.4
Transportation. —0.78 —1.66 —{.36 1.60 —4.44 —1.68 -0.78 0 ® ¢ 1.1

% Baged on estimates from table 3.
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TapLe 5 —EsTiMaTED REGRESSIONS, REbucED Form

Residual
Sum-of-Squares
Emp Emp_, P, [ R* Cuantity Price

Agricultire

Quantity -0.18% 0.512 —.027 439 .92 .018 - .00a3

Price 2.002 —1.836 769 ~.313 T2 —.0063 215
Construction

Quantity 2.071 — L.R886 ~.193 822 .99 .0230 —.0144

Price 0.249 —0.020 .849 —.041 .95 —.0144 0227
Manufacturing

Quantity 3.45 -3.0% .265 B4 .99 0324 — . 0066

Price -0.37 0.358 877 -.031 .98 — 0066 0037
Mining

Quantity 2.255 —2.081 —.024 781 .98 0254 ~.0144

Price —1.025 2.344 R02 - .932 .86 —.0144 1235
Transportation

Quantity 3.024 -2.75 533 924 .99 0172 -.0129

Price -0.519 0.543 .259 —.197 &7 —.0129 Q164

price and quantity. The coefficients of lagged
quantity as well as current employment will be
assumed to be positive in both the supply and the
demand equations. The other coefficients will not
be constrained because their signs seem ambigu-
ous. If the lagged variables are in the model en-
tirely because the residuals are first-order auto-
correlated, then the [agged variables will have
signs opposite of the current variables. But if a
distributed lag model is hypothesized, the lagged
variables are likely to have the same sign as the
current variable. Incidentally, the neglect of ex-
pectations may be maore serious in the model with
lagged influences.

The reduced form estimates are reported in
table 5, and the implied bounds are reported in
table 6. Because only the employment and the
lagged quantity coefficients are constrained, only
these two variables can be used as instruments.
As it turns out, current employment is selected
as an instrument for estimating the construction
supply elasticity and lagged output is selected as
an instrument for estimating the mining demand

elasticity. Agriculture admits no solution be-
cause the employment variable is estimated in
the reduced form to have a negative effect on
quantity and a positive effect on price, which
violates the assumptions of the model.

The differences between tables 4 and 6 are not
too great. In both cases the information is better
about the demand elasticities than the supply
elasticities. The ordering of the demand elas-
ticities is similar, In table 6, the estimates of the
ratio of the demand variance to the supply vari-
ance for construction are not less than one, but
they are less than one for transportation.

IV. Cosclusion

This article has a specific and a general conclu-
sion. The specific conclusion is that, contrary to
prevailing opinion, it does make sense to regress
quantity on price and then to take the estimated
function to be a supply curve or a demand curve
depending on the sign of the estimated elasticity.
To do this it is necessary to assume that the

TaBLE 6 —ESTIMATES aAND BOUNDS FOR PRICE ELASTICITIES AND RESIDUAL VARIANCE®

) . Bound
Estimates Bound far g Bound for & for o /a?
b b, b AEMPY b {0_)  Lower Upper Lawer Upper Lower Upper

Agriculture —-0.029 -2.8 —0.054 —-1.40 No salution No solution Na solution,
Construction —(L463 -1.6 8.32 -20.0 -1.4 -0.70 0 8132 0.008 1.56
Manufacturing —1.%1 —-4.9 -9.132 —26.0 —-4.9 —-1.81 0 x 0 1.73
Mining -0.12 -1.7 —2.20 —{.84 —(.84 -0.12 0.15 » 0 31.86
Transportation. -0.79 -1.3 -582 —4.69 -1.3 -{0.79 0 x 0 0.69

* Based on estimates fruom rable 5.
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covariance between the errors in the supply and
demand equations is zero. Although the esti-
mated slope is biased downward, the reverse re-
gression estimate consistently overestimates the
true slope, and consequently the true slope can
be consistently bounded.

The general conclusion of this article is that
ZErQ covariance restrictions together with in-
equality constraints on parameters can serve to
partially identify under-identified systems. In the
two-equation case, algorithms for imposing these
constraints in effect select an instrumental vari-
able from a candidate list.
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